15 research outputs found

    Genetics of migraine in the age of genome-wide association studies

    Get PDF
    Genetic factors importantly contribute to migraine. However, unlike for rare monogenic forms of migraine, approaches to identify genes for common forms of migraine have been of limited success. Candidate gene association studies were often negative and positive results were often not replicated or replication failed. Further, the significance of positive results from linkage studies remains unclear owing to the inability to pinpoint the genes under the peaks that may be involved in migraine. Problems hampering these studies include limited sample sizes, methods of migraine ascertainment, and the heterogeneous clinical phenotype. Three genome-wide association studies are available now and have successfully identified four new genetic variants associated with migraine. One new variant (rs1835740) modulates glutamate homeostasis, thus integrates well with current concepts of neurotransmitter disturbances. This variant may be more specific for severe forms of migraine such as migraine with aura than migraine without aura. Another variant (rs11172113) implicates the lipoprotein receptor LRP1, which may interact with neuronal glutamate receptors, thus also providing a link to the glutamate pathway. In contrast, rs10166942 is in close proximity to TRPM8, which codes for a cold and pain sensor. For the first time this links a gene explicitly implicated in pain related pathways to migraine. The potential function of the fourth variant rs2651899 (PRDM16) in migraine is unclear. All these variants only confer a small to moderate change in risk for migraine, which concurs with migraine being a heterogeneous disorder. Ongoing large international collaborations will likely identify additional gene variants for migraine

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research

    Significant linkage to migraine with aura on chromosome 11q24.

    No full text
    Migraine with aura (MA) is a prevalent neurological condition with strong evidence for a genetic basis. Familial hemiplegic migraine, a rare Mendelian form of MA, can be caused by mutations in the calcium channel gene, CACNA1A or in the ATP1A2 gene, a Na+/K+ pump. Susceptibility genes for the more prevalent forms of migraine have yet to be identified despite several reports of linkage including loci on 4q24, 1q31, 19p13 and Xq24-28. We have undertaken a genome-wide screen of 43 Canadian families, segregating MA with families chosen for an apparent autosomal dominant pattern of transmission. Diagnosis was based upon International Headache Society Criteria. Parametric linkage analysis revealed a novel locus on 11q24 with a two-point LOD score of 4.2 and a multi-point parametric LOD score of 5.6. We did not find any support for linkage at previously reported loci. The lack of consensus amongst linkage studies, including this study, is probably an indication of the heterogeneity that is inherent for MA. Nevertheless, the finding of a highly significant locus with a LOD score of 5.6 is powerful evidence that a gene increasing susceptibility to MA resides on 11q24. Several candidate genes map to this region of the genome including a number of ion channel genes such as GRIK4, SCNB2, KCNJ5 and KCNJ1

    Significant linkage to migrane with aura on chromosome 11q24

    No full text
    Migraine with aura (MA) is a prevalent neurological condition with strong evidence for a genetic basis. Familial hemiplegic migraine, a rare Mendelian form of MA, can be caused by mutations in the calcium channel gene, CACNA1A or in the ATP1A2 gene, a Na+/K+ pump. Susceptibility genes for the more prevalent forms of migraine have yet to be identified despite several reports of linkage including loci on 4q24, 1q31, 19p13 and Xq24-28. We have undertaken a genome-wide screen of 43 Canadian families, segregating MA with families chosen for an apparent autosomal dominant pattern of transmission. Diagnosis was based upon International Headache Society Criteria. Parametric linkage analysis revealed a novel locus on 11q24 with a two-point LOD score of 4.2 and a multi-point parametric LOD score of 5.6. We did not find any support for linkage at previously reported loci. The lack of consensus amongst linkage studies, including this study, is probably an indication of the heterogeneity that is inherent for MA. Nevertheless, the finding of a highly significant locus with a LOD score of 5.6 is powerful evidence that a gene increasing susceptibility to MA resides on 11q24. Several candidate genes map to this region of the genome including a number of iion channel genes such as GRIK4, SCNB2, KCNJ5 and KCNJ1

    Neurons derived from individual early Alzheimer’s disease patients reflect their clinical vulnerability

    No full text
    Establishing preclinical models of Alzheimer’s disease that predict clinical outcomes remains a critically important, yet to date not fully realized, goal. Models derived from human cells offer considerable advantages over non-human models, including the potential to reflect some of the inter-individual differences that are apparent in patients. Here we report an approach using induced pluripotent stem cell-derived cortical neurons from people with early symptomatic Alzheimer’s disease where we sought a match between individual disease characteristics in the cells with analogous characteristics in the people from whom they were derived. We show that the response to amyloid-β burden in life, as measured by cognitive decline and brain activity levels, varies between individuals and this vulnerability rating correlates with the individual cellular vulnerability to extrinsic amyloid-β in vitro as measured by synapse loss and function. Our findings indicate that patient-induced pluripotent stem cell-derived cortical neurons not only present key aspects of Alzheimer’s disease pathology but also reflect key aspects of the clinical phenotypes of the same patients. Cellular models that reflect an individual’s in-life clinical vulnerability thus represent a tractable method of Alzheimer’s disease modelling using clinical data in combination with cellular phenotypes

    A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura.

    No full text
    Migraine with aura is a common, debilitating, recurrent headache disorder associated with transient and reversible focal neurological symptoms. A role has been suggested for the two-pore domain (K2P) potassium channel, TWIK-related spinal cord potassium channel (TRESK, encoded by KCNK18), in pain pathways and general anaesthesia. We therefore examined whether TRESK is involved in migraine by screening the KCNK18 gene in subjects diagnosed with migraine. Here we report a frameshift mutation, F139WfsX24, which segregates perfectly with typical migraine with aura in a large pedigree. We also identified prominent TRESK expression in migraine-salient areas such as the trigeminal ganglion. Functional characterization of this mutation demonstrates that it causes a complete loss of TRESK function and that the mutant subunit suppresses wild-type channel function through a dominant-negative effect, thus explaining the dominant penetrance of this allele. These results therefore support a role for TRESK in the pathogenesis of typical migraine with aura and further support the role of this channel as a potential therapeutic target

    Bayesian latent trait modelling of migraine symptom data

    No full text
    Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility
    corecore