23 research outputs found

    Fabrication and Mechanical Properties of Chitosan-Montmorillonite Nano-composite

    Get PDF
    Chitosan has found various applications in gastrointestinal stent, biomedical implants as well as an effective absorbent in waste water treatment. However, the material suffers from low strength and large shrinkage upon dehydration. The current project is aimed to develop a process to fabricate chitosan composites with the addition of functionalised montmorillonite nanoparticles and to examine the effect of ceramic content on the mechanical behavior of the composites. This paper describes the fabrication of chitosan with montmorrillonite composites and the mechanical testing of the samples and the mechanical behaviour of the composites, as well as the observations of the microstructure. The effects of composition and microstructure on the mechanical properties of the composite are investigated. The results indicate that the nanoparticles are dispersed uniformly in the matrix up to 40wt% using high speed homogeniser. The elastic modulus increases monotonically with the addition of nanoparticles, but the fracture strength drops due to the defects introduced by the nanoparticles.</jats:p

    Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium tuberculosis Infection

    Get PDF
    Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation

    Anti-Malarial Drug Artesunate Attenuates Experimental Allergic Asthma via Inhibition of the Phosphoinositide 3-Kinase/Akt Pathway

    Get PDF
    , and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway.Female BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model.Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma

    Human Embryonic and Rat Adult Stem Cells with Primitive Endoderm-Like Phenotype Can Be Fated to Definitive Endoderm, and Finally Hepatocyte-Like Cells

    Get PDF
    Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development

    Numerical optimization and multi-particle dynamics simulation of the radial matching section of the RFQ

    No full text
    The ABC code is an optimization program for the development of matching channels and dynamical matchers in radio frequency quadrupole (RFQ) structures, and a new approach to this code to define the geometry of the radial matching section of the RFQ has been developed. This approach is based on the application of the numerical optimization step by step. This optimization is intended to search for the initial matching condition of a beam, the optimization of parameters of a cell of the channel on given characteristic parameters and traces of a beam in linear channels in both forward and backward directions. To further verify the results of the optimization, multi-particle beam dynamics simulations have been carried out using the BEAMPATH and TRACK codes. The result of the beam dynamics simulation shows that the optimization result of the ABC code is reasonable and this approach provides an opportunity to redesign the structure of the radial matching section of the RFQ
    corecore