56 research outputs found

    Use of Non-Amplified RNA Samples for Microarray Analysis of Gene Expression

    Get PDF
    Demand for high quality gene expression data has driven the development of revolutionary microarray technologies. The quality of the data is affected by the performance of the microarray platform as well as how the nucleic acid targets are prepared. The most common method for target nucleic acid preparation includes in vitro transcription amplification of the sample RNA. Although this method requires a small amount of starting material and is reported to have high reproducibility, there are also technical disadvantages such as amplification bias and the long, laborious protocol. Using RNA derived from human brain, breast and colon, we demonstrate that a non-amplification method, which was previously shown to be inferior, could be transformed to a highly quantitative method with a dynamic range of five orders of magnitude. Furthermore, the correlation coefficient calculated by comparing microarray assays using non-amplified samples with qRT-PCR assays was approximately 0.9, a value much higher than when samples were prepared using amplification methods. Our results were also compared with data from various microarray platforms studied in the MicroArray Quality Control (MAQC) project. In combination with micro-columnar 3D-Geneâ„¢ microarray, this non-amplification method is applicable to a variety of genetic analyses, including biomarker screening and diagnostic tests for cancer

    Accurate Expression Profiling of Very Small Cell Populations

    Get PDF
    BACKGROUND: Expression profiling, the measurement of all transcripts of a cell or tissue type, is currently the most comprehensive method to describe their physiological states. Given that accurate profiling methods currently available require RNA amounts found in thousands to millions of cells, many fields of biology working with specialized cell types cannot use these techniques because available cell numbers are limited. Currently available alternative methods for expression profiling from nanograms of RNA or from very small cell populations lack a broad validation of results to provide accurate information about the measured transcripts. METHODS AND FINDINGS: We provide evidence that currently available methods for expression profiling of very small cell populations are prone to technical noise and therefore cannot be used efficiently as discovery tools. Furthermore, we present Pico Profiling, a new expression profiling method from as few as ten cells, and we show that this approach is as informative as standard techniques from thousands to millions of cells. The central component of Pico Profiling is Whole Transcriptome Amplification (WTA), which generates expression profiles that are highly comparable to those produced by others, at different times, by standard protocols or by Real-time PCR. We provide a complete workflow from RNA isolation to analysis of expression profiles. CONCLUSIONS: Pico Profiling, as presented here, allows generating an accurate expression profile from cell populations as small as ten cells

    Factors affecting the yield of microRNAs from laser microdissectates of formalin-fixed tissue sections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of microRNAs in specific cell populations microdissected from tissues can be used to define their biological roles, and to develop and deploy biomarker assays. In this study, a number of variables were examined for their effect on the yield of microRNAs in samples obtained from formalin-fixed paraffin-embedded tissues by laser microdissection.</p> <p>Results</p> <p>MicroRNA yield was improved by using cresyl violet instead of hematoxylin-eosin to stain tissue sections in preparation for microdissection, silicon carbide instead of glass fiber as matrix in RNA-binding columns, and overnight digestion of dissected samples with proteinase K. Storage of slides carrying stained tissue sections at room temperature for up to a week before microdissection, and storage of the microdissectates at room temperature for up to a day before RNA extraction did not adversely affect microRNA yield.</p> <p>Conclusions</p> <p>These observations should be of value for the efficient isolation of microRNAs from microdissected formalin-fixed tissues with a flexible workflow.</p

    Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56335, doi:10.1371/journal.pone.0056335.The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.This work was performed with funding from the Center for Dark Energy Biosphere Investigations (C-DEBI) to William Orsi (OCE-0939564) and The Ocean Life Institute (WHOI) to Virginia Edgcomb (OLI-27071359)

    Global Array-Based Transcriptomics from Minimal Input RNA Utilising an Optimal RNA Isolation Process Combined with SPIA cDNA Probes

    Get PDF
    Technical advances in the collection of clinical material, such as laser capture microdissection and cell sorting, provide the advantage of yielding more refined and homogenous populations of cells. However, these attractive advantages are counter balanced by the significant difficultly in obtaining adequate nucleic acid yields to allow transcriptomic analyses. Established technologies are available to carry out global transcriptomics using nanograms of input RNA, however, many clinical samples of low cell content would be expected to yield RNA within the picogram range. To fully exploit these clinical samples the challenge of isolating adequate RNA yield directly and generating sufficient microarray probes for global transcriptional profiling from this low level RNA input has been addressed in the current report. We have established an optimised RNA isolation workflow specifically designed to yield maximal RNA from minimal cell numbers. This procedure obtained RNA yield sufficient for carrying out global transcriptional profiling from vascular endothelial cell biopsies, clinical material not previously amenable to global transcriptomic approaches. In addition, by assessing the performance of two linear isothermal probe generation methods at decreasing input levels of good quality RNA we demonstrated robust detection of a class of low abundance transcripts (GPCRs) at input levels within the picogram range, a lower level of RNA input (50 pg) than previously reported for global transcriptional profiling and report the ability to interrogate the transcriptome from only 10 pg of input RNA. By exploiting an optimal RNA isolation workflow specifically for samples of low cell content, and linear isothermal RNA amplification methods for low level RNA input we were able to perform global transcriptomics on valuable and potentially informative clinically derived vascular endothelial biopsies here for the first time. These workflows provide the ability to robustly exploit ever more common clinical samples yielding extremely low cell numbers and RNA yields for global transcriptomics

    Highly Parallel Genome-Wide Expression Analysis of Single Mammalian Cells

    Get PDF
    We have developed a high-throughput amplification method for generating robust gene expression profiles using single cell or low RNA inputs.The method uses tagged priming and template-switching, resulting in the incorporation of universal PCR priming sites at both ends of the synthesized cDNA for global PCR amplification. Coupled with a whole-genome gene expression microarray platform, we routinely obtain expression correlation values of R(2)~0.76-0.80 between individual cells and R(2)~0.69 between 50 pg total RNA replicates. Expression profiles generated from single cells or 50 pg total RNA correlate well with that generated with higher input (1 ng total RNA) (R(2)~0.80). Also, the assay is sufficiently sensitive to detect, in a single cell, approximately 63% of the number of genes detected with 1 ng input, with approximately 97% of the genes detected in the single-cell input also detected in the higher input.In summary, our method facilitates whole-genome gene expression profiling in contexts where starting material is extremely limiting, particularly in areas such as the study of progenitor cells in early development and tumor stem cell biology

    Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by Laser Capture Microdissection

    Get PDF
    Background: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC) are predominant. However several other cell types, including myoepithelial (MMC) and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems®) system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity.[br/] Results: The best results were obtained when staining 8 μm-thick sections with Cresyl violet® (Ambion, Applied Biosystems®) and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking) and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini (300,000 to 600,000 μm2) ranges between 5 to 10 ng. RNA integrity number (RIN) was ca. 8.0 and selectivity of this LCM protocol was demonstrated through qPCR analyses for several alveolar cell specific genes, including LALBA (α-lactalbumin) and CSN1S2 (αs2-casein), as well as Krt14 (cytokeratin 14), CD3e and CD68 which are specific markers of MMC, lymphocytes and macrophages, respectively.[br/] Conclusions: RNAs isolated from MEC in this manner were of very good quality for subsequent linear amplification, thus making it possible to establish a referential gene expression profile of the healthy MEC, a useful platform for tumor biomarker discovery

    Construction of a large scale integrated map of macrophage pathogen recognition and effector systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an effort to better understand the molecular networks that underpin macrophage activation we have been assembling a map of relevant pathways. Manual curation of the published literature was carried out in order to define the components of these pathways and the interactions between them. This information has been assembled into a large integrated directional network and represented graphically using the modified Edinburgh Pathway Notation (mEPN) scheme.</p> <p>Results</p> <p>The diagram includes detailed views of the toll-like receptor (TLR) pathways, other pathogen recognition systems, NF-kappa-B, apoptosis, interferon signalling, MAP-kinase cascades, MHC antigen presentation and proteasome assembly, as well as selected views of the transcriptional networks they regulate. The integrated pathway includes a total of 496 unique proteins, the complexes formed between them and the processes in which they are involved. This produces a network of 2,170 nodes connected by 2,553 edges.</p> <p>Conclusions</p> <p>The pathway diagram is a navigable visual aid for displaying a consensus view of the pathway information available for these systems. It is also a valuable resource for computational modelling and aid in the interpretation of functional genomics data. We envisage that this work will be of value to those interested in macrophage biology and also contribute to the ongoing Systems Biology community effort to develop a standard notation scheme for the graphical representation of biological pathways.</p

    Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.</p> <p>The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.</p> <p>Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.</p> <p>Results</p> <p>We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (<it>SOHLH2</it>, <it>MAEL</it>, <it>MATER</it>, <it>VASA</it>, <it>GDF9</it>, <it>BMP15</it>) and three granulosa cell-specific genes (<it>KL</it>, <it>GATA4</it>, <it>AMH</it>).</p> <p>A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.</p> <p>Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.</p> <p>Conclusions</p> <p>The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.</p

    The Mayer-Rokitansky-Küster-Hauser syndrome (congenital absence of uterus and vagina) – phenotypic manifestations and genetic approaches

    Get PDF
    The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome affects at least 1 out of 4500 women and has for a long time been considered as a sporadic anomaly. Congenital absence of upper vagina and uterus is the prime feature of the disease which, in addition, is often found associated with unilateral renal agenesis or adysplasia as well as skeletal malformations (MURCS association). The phenotypic manifestations of MRKH overlap various other syndromes or associations and thus require accurate delineation. Since MRKH manifests itself in males, the term GRES syndrome (Genital, Renal, Ear, Skeletal) might be more appropriate when applied to both sexes. The MRKH syndrome, when described in familial aggregates, seems to be transmitted as an autosomal dominant trait with an incomplete degree of penetrance and variable expressivity. This suggests the involvement of either mutations in a major developmental gene or a limited chromosomal deletion. Until recently progress in understanding the genetics of MRKH syndrome has been slow, however, now HOX genes have been shown to play key roles in body patterning and organogenesis, and in particular during genital tract development. Expression and/or function defects of one or several HOX genes may account for this syndrome
    • …
    corecore