10,195 research outputs found

    Hu(l)man Medi(t)ations: Intercultural explorations in Keri Hulme’s The Windeater / Te Kaihau

    Get PDF
    published_or_final_versio

    High-temperature ferroelectric order and magnetic field-cooled effect driven magnetoelectric coupling in R2BaCuO5 (R= Er, Dy, Sm)

    Full text link
    The high-temperature ferroelectric order and a remarkable magnetoelectric effect driven by the magnetic field cooling are reported in R2BaCuO5 (R = Er, Dy, Sm) series. The ferroelectric (FE) orders are observed at much higher temperatures than their magnetic orders for all three members. The value of FE Curie temperature (TFE) is considerably high as ~ 235 K with the polarization value (P) of ~ 1410 {\mu}C/m2 for a 4 kV/cm poling field in case of Er2BaCuO5, whereas the values of TFE and P are also promising as ~ 232 K and ~ 992 {\mu}C/m2 for Dy2BaCuO5, and ~ 184 K and ~ 980 {\mu}C/m2 for Sm2BaCuO5. The synchrotron diffraction studies of Dy2BaCuO5 confirm a structural transition at TFE to a polar Pna21 structure, which correlates the FE order. An unusual magnetoelectric coupling is observed below the R order for Er and Dy compounds and below the Cu order for Sm compound, when the pyroelectric current is recorded only with the magnetic field both in heating and cooling cycles i.e. typical magnetic field cooled effect. The magnetic field cooled effect driven emergence of polarization is ferroelectric in nature, as it reverses due to the opposite poling field. The unexplored R2BaCuO5 series attracts the community for large TFE, high P value, and strange magnetoelectric consequences.Comment: 9 figures and 2 supporting figure

    Anomalous Phase Transition in Strained SrTiO3_3 Thin Films

    Full text link
    We have studied the cubic to tetragonal phase transition in epitaxial SrTiO3_3 films under various biaxial strain conditions using synchrotron X-ray diffraction. Measuring the superlattice peak associated with TiO6_6 octahedra rotation in the low temperature tetragonal phase indicates the presence of a phase transition whose critical temperature is a strong function of strain, with TC_C as much as 50K above the corresponding bulk temperature. Surprisingly, the lattice constants evolve smoothly through the transition with no indication of a phase change. This signals an important change in the nature of the phase transition due to the epitaxy strain and substrate clamping effect. The internal degrees of freedom (TiO6_6 rotations) have become uncoupled from the overall lattice shape.Comment: 4 pages, 3 figures, REVTeX

    Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach

    Get PDF
    It is shown that the perturbative expansions of the correlation functions of a relativistic quantum field theory at finite temperature are uniquely determined by the equations of motion and standard axiomatic requirements, including the KMS condition. An explicit expression as a sum over generalized Feynman graphs is derived. The canonical formalism is not used, and the derivation proceeds from the beginning in the thermodynamic limit. No doubling of fields is invoked. An unsolved problem concerning existence of these perturbative expressions is pointed out.Comment: 17pages Late

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    OBJECTIVE: a benchmark for object-oriented active database systems

    Get PDF
    Cataloged from PDF version of article.Although much work in the area of Active Database Management Systems (ADBMSs) has been done, it is not yet clear how the performance of an active DBMS can be evaluated systematically. In this paper, we describe the OBJECTIVE Benchmark for object-oriented ADBMSs, and present experimental results from its implementation in an active database system prototype. OBJECTIVE can be used to identify performance bottlenecks and active functionalities of an ADBMS, and to compare the performance of multiple ADBMSs. (C) 1999 Published by Elsevier Science Inc. All rights reserved

    A Class of Renormalization Group Invariant Scalar Field Cosmologies

    Full text link
    We present a class of scalar field cosmologies with a dynamically evolving Newton parameter GG and cosmological term Λ\Lambda. In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for GG and Λ\Lambda near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of GG and Λ\Lambda near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.Comment: 10 pages, RevTex4, no figures, to appear on GR

    Exponential Renormalization II: Bogoliubov's R-operation and momentum subtraction schemes

    Full text link
    This article aims at advancing the recently introduced exponential method for renormalisation in perturbative quantum field theory. It is shown that this new procedure provides a meaningful recursive scheme in the context of the algebraic and group theoretical approach to renormalisation. In particular, we describe in detail a Hopf algebraic formulation of Bogoliubov's classical R-operation and counterterm recursion in the context of momentum subtraction schemes. This approach allows us to propose an algebraic classification of different subtraction schemes. Our results shed light on the peculiar algebraic role played by the degrees of Taylor jet expansions, especially the notion of minimal subtraction and oversubtractions.Comment: revised versio

    TLEP: A High-Performance Circular e+e- Collider to Study the Higgs Boson

    Full text link
    The recent discovery of a light Higgs boson has opened up considerable interest in circular e+e- Higgs factories around the world. We report on the progress of the TLEP concept since last year. TLEP is an e+e- circular collider capable of very high luminosities in a wide centre-of-mass (ECM) spectrum from 90 to 350 GeV. TLEP could be housed in a new 80 to 100 km tunnel in the Geneva region. The design can be adapted to different ring circumference (e.g. LEP3 in the 27 km LHC tunnel). TLEP is an ideal complementary machine to the LHC thanks to high luminosity, exquisite determination of ECM and the possibility of four interaction points, both for precision measurements of the Higgs boson properties and for precision tests of the closure of the Standard Model from the Z pole to the top threshold.Comment: Contribution to IPAC13, 12-17 May 2013, Shanghai, Chin
    • 

    corecore