1,001 research outputs found

    A single-end protection scheme for hybrid MMC HVDC grids considering the impacts of the active fault current-limiting control

    Get PDF
    In the hybrid modular multilevel converter (MMC) based high voltage direct current (HVDC) systems, the fault current can be actively suppressed by the converter itself, which endows a smaller requirement for current-limiting reactors (CLR) and a larger time margin for fault detection algorithms, comparing with the half-bridge MMC. But the robustness to fault resistance and noise disturbance of existing boundary protection schemes will be deteriorated with small CLRs. Moreover, the fast response of the fault current-limiting control will change the output DC voltage of hybrid MMC, which affects the fault characteristics and may cause mal-operation of existing protection algorithms. Thus, a single-end protection scheme considering the impacts of the active current-limiting control is proposed for the hybrid MMC based DC grids. The traveling-wave characteristics under different fault stages are analyzed to evaluate the impacts of the fault current-limiting control. In addition, a coordination protection strategy versus different fault conditions is adopted to improve reliability. Various cases in PSCAD/EMTDC are simulated to verify that the proposed method is robust to fault resistance, fault distance, power reversal, AC faults, and immune to noise

    A novel HVDC circuit breaker for HVDC application

    Get PDF
    Hybrid high voltage direct current circuit breakers (DCCBs) are capable of interrupting fault current within a few milliseconds, but this technology has high capital cost, especially in a meshed HVDC grid. To increase the economic competitiveness of hybrid DCCBs, this paper proposes a capacitor commutated dc circuit breaker (CCCB). The CCCB mainly comprises an auxiliary branch with a fast dis-connector in series with semiconductor devices and the main branch with the series connection of a dc capacitor and diode valves. This paper provides a detailed depiction of the CCCB. The topology and operating principles are discussed. The impact of snubber circuits and stray inductances on the commutation process is analyzed. The general sizing method for the main components in the CCCB is detailed. Reclosing to transmission lines with different operating conditions is studied. Several extended topologies are proposed to further reduce the semiconductor cost and on-state operation power loss. The power loss and cost of CCCB are assessed. Extensive simulations on PSCAD/EMTDC verified the dc fault isolation and reclosing of the CCCB

    An adaptive fault current limiting control for MMC and its application in DC grid

    Get PDF
    This paper proposes an adaptive fault current limiting control (AFCLC) for modular multilevel converters (MMC). Without introducing extra current limiting devices, this control scheme enables fast fault current suppression during DC faults. The AFCLC will be triggered automatically once DC faults occur. By adaptively reducing the output DC voltages of MMCs, the fault current can be suppressed. Compared with the existing current limiting methods, the proposed AFCLC has a better performance on fault current limiting, since it only depends on the real-time operating condition and no fault detection delay is imposed. Firstly, the principle of the proposed AFCLC together with the mathematical analysis is disclosed. Then, the sensitivity analysis of the impact of key control parameters on the current limiting effect is investigated. Finally, the effectiveness of AFCLC is demonstrated in a four-terminal HVDC grid test model. The simulation results show that the proposed AFCLC can reduce the interrupted current and energy absorption of a DCCB from 10.39 kA and 38.24 MJ to 4.62 kA and 8.32 MJ, respectively. The simulation results also prove that the AFCLC will not affect the accuracy of the DC fault detection algorithms under DC faults

    A unidirectional DC-DC autotransformer for DC grid application

    Get PDF
    Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT) and a unidirectional step-down DC-DC autotransformer (DUDAT) are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility

    Treatment of Post Traumatic Internal Carotid Artery Pseudo Aneurysm with Intravascular Coil Embolization

    Get PDF
    Introduction: Vascular complications such as bleeding and pseudoaneurysm following an endoscopic trans-sphenoidal approach for the basal skull pathology are rare but when it occurs it brings a significant risk of morbidity and mortality along with it. Intraoperative bleeding can be managed with manual packing and in case of pseudoaneurysm formation, it can be successfully managed with endovascular coiling.Case presentation: One month after an endoscopic sphenoidal resection of mucocele. A 49-year-old female presented with massive left sided epistaxis due to formation and rupture of pseudoaneurysm at left cavernous segment of internal carotid artery. She was managed with multiple coil embolization of pseudoaneurysm.Conclusion: A patient with pseudoaneurysm formation following an endoscopic trans-sphenoidal approach for a mucocele resection was successfully managed by the emergency endovascular coiling, with complete obliteration of the aneurysm and bleeding while maintaining the vessel patency. This approach is less invasive, quick as well as safe and do not require long term anticoagulation. However, long term follow and larger sample are required to evaluate its efficacy

    Engineering Haloferax mediterranei as an Efficient Platform for High Level Production of Lycopene

    Get PDF
    Lycopene attracts increasing interests in the pharmaceutical, food, and cosmetic industries due to its anti-oxidative and anti-cancer properties. Compared with other lycopene production methods, such as chemical synthesis or direct extraction from plants, the biosynthesis approach using microbes is more economical and sustainable. In this work, we engineered Haloferax mediterranei, a halophilic archaeon, as a new lycopene producer. H. mediterranei has the de novo synthetic pathway for lycopene but cannot accumulate this compound. To address this issue, we reinforced the lycopene synthesis pathway, blocked its flux to other carotenoids and disrupted its competitive pathways. The reaction from geranylgeranyl-PP to phytoene catalyzed by phytoene synthase (CrtB) was identified as the rate-limiting step in H. mediterranei. Insertion of a strong promoter PphaR immediately upstream of the crtB gene, or overexpression of the heterologous CrtB and phytoene desaturase (CrtI) led to a higher yield of lycopene. In addition, blocking bacterioruberin biosynthesis increased the purity and yield of lycopene. Knock-out of the key genes, responsible for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis, diverted more carbon flux into lycopene synthesis, and thus further enhanced lycopene production. The metabolic engineered H. mediterranei strain produced lycopene at 119.25 ± 0.55 mg per gram of dry cell weight in shake flask fermentation. The obtained yield was superior compared to the lycopene production observed in most of the engineered Escherichia coli or yeast even when they were cultivated in pilot scale bioreactors. Collectively, this work offers insights into the mechanism involved in carotenoid biosynthesis in haloarchaea and demonstrates the potential of using haloarchaea for the production of lycopene or other carotenoids

    Active current-limiting control to handle DC line fault of overhead DC grid

    Get PDF
    To handle with the DC line faults in a DC grid, this paper proposed an active current-limiting controller for hybrid MMC. With this active current-limiting control strategy, the requirement of interruption current of DCCB will be significantly decreased, and the investment of DC grid will be reduced obviously. Firstly, the control architecture of active current-limiting controller is disclosed. To avoid the overvoltage of submodule capacitors during DC fault, a dynamic limiter for the reference value of the DC current controller is proposed. To decrease the peak of fault current, the feedforward controller of DC voltage is put forward. The decoupling controllability of the AC/DC voltage of hybrid MMC is disclosed. The current-limiting mechanism of the active current-limiting controller is analysis. Then, the validity of the active current-limiting control strategy is verified by RTDS

    Study on the One-Proton Halo Structure in 23^{23}Al

    Full text link
    The Glauber theory has been used to investigate the reaction cross section of proton-rich nucleus 23^{23}Al. A core plus a proton structure is assumed for 23^{23}Al. HO-type density distribution is used for the core while the density distribution for the valence proton is calculated by solving the eigenvalue problem of Woods-Saxon potential. The transparency function in an analytical expression is obtained adopting multi-Gaussian expansion for the density distribution. Coulomb correction and finite-range interaction are introduced. This modified Glauber model is apt for halo nuclei. A dominate s-wave is suggested for the last proton in 23^{23}Al from our analysis which is possible in the RMF calculation.Comment: 4 pages, 4 figure

    Complete sequence and organization of Antheraea pernyi nucleopolyhedrovirus, a dr-rich baculovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The completion and reporting of baculovirus genomes is extremely important as it advances our understanding of gene function and evolution. Due to the large number of viral genomes now sequenced it is very important that authors present significantly detailed analyses to advance the understanding of the viral genomes. However, there is no report of the <it>Antheraea pernyi </it>nucleopolyhedrovirus (AnpeNPV) genome.</p> <p>Results</p> <p>The genome of AnpeNPV, which infects Chinese tussah silkworm (<it>Antheraea pernyi</it>), was sequenced and analyzed. The genome was 126,629 bp in size. The G+C content of the genome, 53.4%, was higher than that of most of the sequenced baculoviruses. 147 open reading frames (ORFs) that putatively encode proteins of 50 or more amino acid residues with minimal overlap were determined. Of the 147 ORFs, 143 appeared to be homologous to other baculovirus genes, and 4 were unique to AnpeNPV. Furthermore, there are still 29 and 33 conserved genes present in all baculoviruses and all lepidopteran baculoviruses respectively. In addition, the total number of genes common to all lepidopteran NPVs is sill 74, however the 74 genes are somewhat different from the 74 genes identified before because of some new sequenced NPVs. Only 6 genes were found exclusively in all lepidopteran NPVs and 12 genes were found exclusively in all Group I NPVs. AnpeNPV encodes <it>v-trex</it>(Anpe115, a 3' to 5' repair exonuclease), which was observed only in CfMNPV and CfDEFNPV in Group I NPVs. This gene potentially originated by horizontal gene transfer from an ancestral host. In addition, AnpeNPV encodes two <it>conotoxin</it>-like gene homologues (<it>ctls</it>), <it>ctl1 </it>and <it>ctl2</it>, which were observed only in HycuNPV, OpMNPV and LdMNPV. Unlike other baculoviruses, only 3 typical homologous regions (<it>hr</it>s) were identified containing 2~9 repeats of a 30 bp-long palindromic core. However, 24 perfect or imperfect direct repeats (<it>dr</it>s) with a high degree of AT content were found within the intergenic spacer regions that may function as non-<it>hr</it>, <it>ori</it>-like regions found in GrleGV, CpGV and AdorGV. 9 <it>dr</it>s were also found in intragenic spacer regions of AnpeNPV.</p> <p>Conclusion</p> <p>AnpeNPV belongs to Group I NPVs and is most similar to HycuNPV, EppoNPV, OpMNPV and CfMNPV based on gene content, genome arrangement, and amino acid identity. In addition, analysis of genes that flank <it>hr</it>s supported the argument that these regions are involved in the transfer of sequences between the virus and host.</p

    P2-Na0.67 Alx Mn1-x O2 : Cost-Effective, Stable and High-Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility.

    Get PDF
    Sodium layered P2-stacking Na0.67 MnO2 materials have shown great promise for sodium-ion batteries. However, the undesired Jahn-Teller effect of the Mn4+ /Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition-metal layers to decrease the number of Mn3+ , we obtain the low cost pure P2-type Na0.67 Alx Mn1-x O2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al-doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid-state NMR techniques. Our results reveal that Al-doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g-1 at 1200 mA g-1
    • …
    corecore