64 research outputs found
Defect Analysis in Microgroove Machining of Nickel-Phosphide Plating by Small Cross-Angle Microgrooving
Crystalline nickel-phosphide (c-Ni-P) plating is a newly developed mold material for precision glass molding (PGM) to fabricate microgrooves. In the ultraprecision cutting process of the c-Ni-P plating material, the neighboring microgrooves are required to adjoin with each other to ensure acute microgroove ridges and miniaturize the microgroove size. Generally, defects of burrs and fracture pits can easily occur on the ridges when the plating layer is grooved. Burrs appear when tears dominate in material removal with a large adjacent amount. With the change of the adjacent amount, the removed material is sheared out from the workpiece, and when the cutting depth of the groove ridge is over the brittle-ductile transition thickness, fracture pits arise. To restrict these defects, a small cross-angle microgrooving method is proposed to test the critical adjacent amount range efficiently. It is found that an acute ridge of the microgroove is formed with a small enough adjacent amount; when this amount is in the range of 570 nm~720 nm in the microgroove machining process, fracture pits begin to arise on the gradient edge. High-quality microgrooves can be obtained based on this methodology
Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance.
Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.Cancer Research UK, Wellcome Trust, National Institutes of Health, Singapore state fundin
A Model-Assisted Reduced-Order ESO Based Cascade Controller for Sensorless Control of Independent Gear-Shifting Actuators
Independent gear-shifting actuation systems, which are based on linear electromagnetic actuators (LEMAs), have tremendous potential to minimize the shifting duration of automated mechanical transmission (AMT). A velocity estimator based on the measurements of current is designed to achieve sensorless control of the actuator by using only electrical subsystem, thus avoiding the use of a complete system model that contains mechanical uncertainties. The elimination of the position sensor simplifies the structure of the gear-shifting system and reduces the manufacturing cost. To enhance the robustness of the position control, model-assisted reduced-order extended state observer (ESO) based cascade controller is constructed, which take parameter uncertainties and external load force as the lumped disturbance to observe and compensate them dynamically. Finally, simulation and experimental results are shown to demonstrate the effectiveness of the proposed velocity estimator and control method
Simulation of Elastic Wave Propagation Based on Meshless Generalized Finite Difference Method with Uniform Random Nodes and Damping Boundary Condition
When the grid-based finite difference (FD) method is used for elastic wavefield forward modeling, it is inevitable that the grid divisions will be inconsistent with the actual velocity interface, resulting in problems related to the stepped grid diffraction and inaccurate travel time of reflected waves. The generalized finite difference method (GFDM), which is based on the Taylor series expansion and weighted least square fitting, solves these problems. The partial derivative of the unknown parameters in the differential equation is represented by the linear combination of the function values of adjacent nodes. In this study, the Poisson disk node generation algorithm and the centroid Voronoi node adjustment algorithm were combined to obtain an even and random node distribution. The generated nodes fit the internal boundary more accurately for model discretization, without the presence of diffracted waves caused by the stepped grid. To avoid the instability caused by the introduction of boundary conditions, a Cerjan damping boundary condition was proposed for boundary reflection processing. The test results generated by the different models showed that the generalized finite difference method can effectively solve the problems related to inaccurate travel time of reflection waves and stepped grid diffraction
MaAzaR, a Zn<sub>2</sub>Cys<sub>6</sub>/Fungus-Specific Transcriptional Factor, Is Involved in Stress Tolerance and Conidiation Pattern Shift in <i>Metarhizium acridum</i>
Entomopathogenic fungi are valuable sources of biological pesticides, with conidial yield and quality being pivotal factors determining their broad applications. AzaR, a fungus-specific zinc-cluster transcription factor, is known to regulate the biosynthesis of polyketone secondary metabolites in Aspergillus niger; however, its role in pathogenic fungi remains unclear. This study investigated the role of MaAzaR in the growth, development, and environmental tolerance of Metarhizium acridum. MaAzaR deletion slowed down conidial germination rate, caused reduction in conidial yield, lowered fungal tolerance to UV radiation, did not affect fungal heat-shock tolerance, and increased fungal sensitivity to the cell-wall-destructive agent calcofluor white. Furthermore, MaAzaR deletion transformed microcycle conidiation to normal conidiation on the microcycle conidiation medium. Transcription profile analysis demonstrated that MaAzaR could regulate transformation of the conidiation pattern by controlling the expression of genes related to cell division, mycelium growth and development, and cell wall integrity. Thus, this study identified a new gene related to fungal conidiation and environmental tolerance, enriching our understanding of the molecular mechanism of microcycle conidiation and providing theoretical support and genetic resources for the development of high-yielding strains
Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities
Abstract Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs), which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas -specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs) could reach 105 CFUs g-1 soil. The number of yellow CFUs had a significant positive correlation (p < 0.05) with the ratio of PAHs to total petroleum hydrocarbons (TPH), indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas -specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP) patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
Abstract The high-speed train transmission system, experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel–rail interaction, exhibits complex dynamic behavior in the actual service environment. This paper focuses on the gearbox in the high-speed train to carry out the bench test, in which various operating conditions (torques and rotation speeds) were set up and the excitation condition covering both internal and external was created. Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied. Meanwhile, a stochastic excitation modal test was also carried out on the test bench under different torques, and the modal parameter of the gearbox was identified. Finally, the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling. The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox, and the effect of external excitation on the gearbox vibration cannot be ignored, especially under the rated operating condition. It was also found that the torque affects the modal parameter of the gearbox significantly. The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system, which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently
- …