142 research outputs found
Multi-objective design optimization of a mobile-bearing total disc arthroplasty considering spinal kinematics, facet joint loads, and metal-on-polyethylene contact mechanics
Total disc arthroplasty (TDA) is a motion-preserving surgical technique used to treat spinal disorders, when more conservative medical therapies fail. Unfortunately, a high incidence of revision surgery exists due to postoperative complications including abnormal kinematics, facet joint arthritis, and implant failures. However, TDA is still an attractive option, since an optimally designed artificial disc is expected to reproduce native segmental biomechanics. Correspondingly, it would mitigate the development of adjacent segment diseases (a major concern of spinal fusion) caused by altered segmental biomechanics.
Design optimization is a process of finding the best design parameters for a component/system to satisfy one/multiple design requirements using optimization algorithms. The shape of a candidate design is parametrized using computer-aided design, such that design parameters are manipulated to minimize one/multiple objective functions subject to performance constraints and design space bounds. Optimization algorithms typically require the gradients of the objective/constraint functions with respect to each design variable. In the traditional design optimization, due to the high computational cost to calculate the gradients by performing finite element analysis in each optimization iteration, it often results in a slow process to seek the optimal solution. To address the problem, an artificial neural network (ANN) was implemented to derive the analytical expressions of the objective/constraint function and their gradients. By incorporating analytical gradients, we successfully developed a multiobjective optimization (MOO) framework considering three performance metrics simultaneously.
Furthermore, a new mobile-bearing TDA design concept featuring a biconcave polyethylene (PE) core was proposed, to strengthen the PE rim, where a high risk of fracture exists. It was hypothesized that there is a trade-off relationship among postoperative performance metrics in terms of spinal kinematics, facet joint loading, and metal-on-polyethylene contact mechanics. We tested this hypothesis by refining the new TDA to match normal segmental biomechanics and alleviate PE core stress. After performing MOO, the best-trade-off TDA design was determined by the solved three-dimensional Pareto frontier. The novel MOO framework can be also used to improve existing TDA designs, as well as to push the cutting edge of surgical techniques for the treatment of spinal disorders
Federated Large Language Model: A Position Paper
Large scale language models (LLM) have received significant attention and
found diverse applications across various domains, but their development
encounters challenges in real-world scenarios. These challenges arise due to
the scarcity of public domain data availability and the need to maintain
privacy with respect to private domain data. To address these issues, federated
learning (FL) has emerged as a promising technology that enables collaborative
training of shared models while preserving decentralized data. We propose the
concept of federated LLM, which comprises three key components, i.e., federated
LLM pre-training, federated LLM fine-tuning, and federated LLM prompt
engineering. For each component, we discuss its advantage over traditional LLM
training methods and propose specific engineering strategies for
implementation. Furthermore, we explore the novel challenges introduced by the
integration of FL and LLM. We analyze existing solutions and identify potential
obstacles faced by these solutions within the context of federated LLM.Comment: 11 pages, 4 figure
- …