346 research outputs found

    Spin-dependent localized Hartree-Fock density-functional approach for the accurate treatment of inner-shell excitation of close-shell atoms

    Get PDF
    We present a spin-dependent localized Hartree-Fock (SLHF) density-functional approach for the treatment of the inner-shell excited-state calculation of atomic systems. In this approach, the electron spin-orbitals in an electronic configuration are obtained first by solving Kohn-Sham (KS) equation with SLHF exchange potential. Then a single-Slater-determinant energy of the electronic configuration is calculated by using these electron spin-orbitals. Finally, a multiplet energy of an inner-shell excited state is evaluated from the single-Slater-determinant energies of the electronic configurations involved in terms of Slater's diagonal sum rule. This procedure has been used to calculate the total and excitation energies of inner-shell excited states of close-shell atomic systems: Be, B^+, Ne, and Mg. The correlation effect is taken into account by incorporating the correlation potentials and energy functionals of Perdew and Wang's (PW) or Lee, Yang, and Parr's (LYP) into calculation. The calculated results with the PW and LYP energy functionals are in overall good agreement with each other and also with available experimental and other ab initio theoretical data. In addition, we present some new results for highly excited inner-shell states.Comment: 8 pages and 9 table

    Evaluating Cascading Impact of Attacks on Resilience of Industrial Control Systems: A Design-Centric Modeling Approach

    Full text link
    A design-centric modeling approach was proposed to model the behaviour of the physical processes controlled by Industrial Control Systems (ICS) and study the cascading impact of data-oriented attacks. A threat model was used as input to guide the construction of the CPS model where control components which are within the adversary's intent and capabilities are extracted. The relevant control components are subsequently modeled together with their control dependencies and operational design specifications. The approach was demonstrated and validated on a water treatment testbed. Attacks were simulated on the testbed model where its resilience to attacks was evaluated using proposed metrics such as Impact Ratio and Time-to-Critical-State. From the analysis of the attacks, design strengths and weaknesses were identified and design improvements were recommended to increase the testbed's resilience to attacks

    Rapid optimization of working parameters of microwave-driven multi-level qubits for minimal gate leakage

    Get PDF
    We propose an effective method to optimize the working parameters (WPs) of microwave-driven quantum logical gates implemented with multi-level physical qubits. We show that by treating transitions between each pair of levels independently, intrinsic gate errors due primarily to population leakage to undesired states can be estimated accurately from spectroscopic properties of the qubits and minimized by choosing appropriate WPs. The validity and efficiency of the approach are demonstrated by applying it to optimize the WPs of two coupled rf SQUID flux qubits for controlled-NOT (CNOT) operation. The result of this independent transition approximation (ITA) is in good agreement with that of dynamic method (DM). Furthermore, the ratio of the speed of ITA to that of DM scales exponentially as 2^n when the number of qubits n increases.Comment: 4pages, 3 figure

    Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized pseudospectral method

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.83.013405.We present an approach in momentum (P) space for the accurate study of multiphoton and above-threshold ionization (ATI) dynamics of atomic systems driven by intense laser fields. In this approach, the electron wave function is calculated by solving the P-space time-dependent Schrödinger equation (TDSE) in a finite P-space volume under a simple zero asymptotic boundary condition. The P-space TDSE is propagated accurately and efficiently by means of the time-dependent generalized pseudospectral method with optimal momentum grid discretization and a split-operator time propagator in the energy representation. The differential ionization probabilities are calculated directly from the continuum-state wave function obtained by projecting the total electron wave function onto the continuum-state subspace using the projection operator constructed by the continuum eigenfunctions of the unperturbed Hamiltonian. As a case study, we apply this approach to the nonperturbative study of the multiphoton and ATI dynamics of a hydrogen atom exposed to intense short-wavelength laser fields. High-resolution photoelectron energy-angular distribution and ATI spectra have been obtained. We find that with the increase of the laser intensity, the photoelectron energy-angular distribution changes from circular to dumbbell shaped and is squeezed along the laser field direction. We also explore the change of the maximum photoelectron energy with laser intensity and strong-field atomic stabilization phenomenon in detail

    Spin-dependent localized Hartree-Fock density-functional approach for the accurate treatment of inner-shell excitation of closed-shell atoms

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.75.014501.A spin-dependent localized Hartree-Fock density-functional approach is presented for the efficient and accurate treatment of inner-shell excited states of atomic systems. The approach is applied to the calculation of the total and excitation energies of inner-shell excited states of several closed-shell atomic systems: Be, B+, Ne, and Mg. The predicted results are in overall good agreement with available experimental and other ab initio theoretical data. In addition, results for highly excited inner-shell states are presented

    Time-dependent localized Hartree-Fock density-functional linear response approach for photoionization of atomic excited states

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.79.053412.We present a time-dependent localized Hartree-Fock density-functional linear response approach for the treatment of photoionization of atomic systems. This approach employs a spin-dependent localized Hartree-Fock exchange potential to calculate electron orbitals and kernel functions, and thus can be used to study the photoionization from atomic excited states. We have applied the approach to the calculation of photoionization cross sections of Ne ground state. The results are in agreement with available experimental data and have comparable accuracies with other ab initio theoretical results. We have also extended the approach to explore the photoionization from Ne excited states and obtained some results for the photoionization from outer-shell and inner-shell excited states

    Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and Rydberg states of He- and Li-like ions

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.71.022513.A spin-dependent density-functional approach for the calculation of highly and multiply excited state of atomic system is proposed based on the localized Hartree-Fock density-functional method and Slater’s diagonal sum rule. In this approach, electron spin orbitals in an electronic configuration are obtained first by solving the Kohn-Sham equation with an exact nonvariational spin-dependent localized Hartree-Fock exchange potential. Then a single-Slater-determinant energy of the electronic configuration is calculated by using these electron spin orbitals. Finally, a multiplet energy of an excited state is evaluated from the single-Slater-determinant energies of the electronic configurations involved in terms of Slater’s diagonal sum rule. This approach has been applied to the calculation of singly, doubly, and especially triply excited Rydberg states of He- and Li-like ions. The total energies obtained from the calculation with an exchange-only (X-only) potential are surprisingly close to those of Hartree-Fock method and the total energies from the calculation with exchange-correlation potential are in overall agreement with available theoretical and experimental data. The presented procedure provides a simple and computationally efficient scheme for the accurate calculation of highly and multiply excited Rydberg states of an atomic system within density-functional theory
    • …
    corecore