21,800 research outputs found
TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity
We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden
theories in the large extra dimension model in which the gravitons propagate in
the (4+n)-dimensional bulk, while the gauge and matter fields are confined to
the four-dimensional world. The corrections to the two-point Green's functions
of the gauge and matter fields from the exchanges of virtual Kaluza-Klein
gravitons are calculated in the gauge independent background field method. In
the framework of effective field theory, we show that the modified one-loop
renormalizable Lagrangian due to quantum gravitational effects contains a TeV
scale Lee-Wick partner of every gauge and matter field as extra degrees of
freedom in the theory. Thus the large extra dimension model of gravity provides
a natural mechanism to the emergence of these exotic particles which were
recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
More on volume dependence of spectral weight function
Spectral weight functions are easily obtained from two-point correlation
functions and they might be used to distinguish single-particle from
multi-particle states in a finite-volume lattice calculation, a problem crucial
for many lattice QCD simulations. In previous studies, it is shown that the
spectral weight function for a broad resonance shares the typical volume
dependence of a two-particle scattering state i.e. proportional to in a
large cubic box of size while the narrow resonance case requires further
investigation. In this paper, a generalized formula is found for the spectral
weight function which incorporates both narrow and broad resonance cases.
Within L\"uscher's formalism, it is shown that the volume dependence of the
spectral weight function exhibits a single-particle behavior for a extremely
narrow resonance and a two-particle behavior for a broad resonance. The
corresponding formulas for both and channels are derived. The
potential application of these formulas in the extraction of resonance
parameters are also discussed
Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks
In proto-neutron stars with strong magnetic fields, the neutrino-nucleon
scattering/absorption cross sections depend on the direction of neutrino
momentum with respect to the magnetic field axis, a manifestation of parity
violation in weak interactions. We study the deleptonization and thermal
cooling (via neutrino emission) of proto-neutron stars in the presence of such
asymmetric neutrino opacities. Significant asymmetry in neutrino emission is
obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic
field threading the neutron star interior, the fractional asymmetry in neutrino
emission is about , corresponding to a pulsar kick velocity
of about km/s for a total radiated neutrino energy of
erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March
10, 1998). Shortened to agree with the published versio
A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations
A skeletal mechanism with 54 species and 269 reactions was developed to predict pyrolysis and oxidation of n-dodecane as a diesel fuel surrogate involving both high-temperature (high-T) and low-temperature (low-T) conditions. The skeletal mechanism was developed from a semi-detailed mechanism developed at the University of Southern California (USC). Species and reactions for high-T pyrolysis and oxidation of C5-C12 were reduced by using reaction flow analysis (RFA), isomer lumping, and then merged into a skeletal C0-C4 core to form a high-T sub-mechanism. Species and lumped semi-global reactions for low-T chemistry were then added to the high-T sub-mechanism and a 54-species skeletal mechanism is obtained. The rate parameters of the low-T reactions were tuned against a detailed mechanism by the Lawrence Livermore National Laboratory (LLNL), as well as the Spray A flame experimental data, to improve the prediction of ignition delay at low-T conditions, while the high-T chemistry remained unchanged. The skeletal mechanism was validated for auto-ignition, perfectly stirred reactors (PSR), flow reactors and laminar premixed flames over a wide range of flame conditions. The skeletal mechanism was then employed to simulate three-dimensional turbulent spray flames at compression ignition engine conditions and validated against experimental data from the Engine Combustion Network (ECN)
Coherent THz emission of Bi_2Sr_2CaCu_2O_8 intrinsic Josephson junction stacks in the hot spot regime
We report on THz emission measurements and low temperature scanning laser
imaging of Bi_2Sr_2CaCu_2O_8 intrinsic Josephson junction stacks. Coherent
emission is observed at large dc input power, where a hot spot and a standing
wave, formed in the "cold" part of the stack, coexist. By varying the hot spot
size the cavity resonance frequency and the emitted radiation can be tuned. The
linewidth of radiation is much smaller than expected from the quality factor of
the cavity mode excited. Thus, an additional mechanism of synchronization seems
to play a role, possibly arising from nonequilibrium processes at the hot spot
edge.Comment: 4.1 pages, 5 figure
Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems
We study energy spectra, eigenstates and quantum diffusion for one- and
two-dimensional quasiperiodic tight-binding models. As our one-dimensional
model system we choose the silver mean or `octonacci' chain. The
two-dimensional labyrinth tiling, which is related to the octagonal tiling, is
derived from a product of two octonacci chains. This makes it possible to treat
rather large systems numerically. For the octonacci chain, one finds singular
continuous energy spectra and critical eigenstates which is the typical
behaviour for one-dimensional Schr"odinger operators based on substitution
sequences. The energy spectra for the labyrinth tiling can, depending on the
strength of the quasiperiodic modulation, be either band-like or fractal-like.
However, the eigenstates are multifractal. The temporal spreading of a
wavepacket is described in terms of the autocorrelation function C(t) and the
mean square displacement d(t). In all cases, we observe power laws for C(t) and
d(t) with exponents -delta and beta, respectively. For the octonacci chain,
0<delta<1, whereas for the labyrinth tiling a crossover is observed from
delta=1 to 0<delta<1 with increasing modulation strength. Corresponding to the
multifractal eigenstates, we obtain anomalous diffusion with 0<beta<1 for both
systems. Moreover, we find that the behaviour of C(t) and d(t) is independent
of the shape and the location of the initial wavepacket. We use our results to
check several relations between the diffusion exponent beta and the fractal
dimensions of energy spectra and eigenstates that were proposed in the
literature.Comment: 24 pages, REVTeX, 10 PostScript figures included, major revision, new
results adde
Multistage Random Growing Small-World Networks with Power-law degree Distribution
In this paper, a simply rule that generates scale-free networks with very
large clustering coefficient and very small average distance is presented.
These networks are called {\bf Multistage Random Growing Networks}(MRGN) as the
adding process of a new node to the network is composed of two stages. The
analytic results of power-law exponent and clustering coefficient
are obtained, which agree with the simulation results approximately.
In addition, the average distance of the networks increases logarithmical with
the number of the network vertices is proved analytically. Since many real-life
networks are both scale-free and small-world networks, MRGN may perform well in
mimicking reality.Comment: 3 figures, 4 page
Low frequency noise characteristics of sub-micron magnetic tunnel junctions
We report that low frequency (up to 200 kHz) noise spectra of magnetic tunnel
junctions with areas ~10^{-10}cm^2$ at 10 Kelvin deviate significantly from the
typical 1/f behavior found in large area junctions at room temperature. In most
cases, a Lorentzian-like shape with characteristic time between 0.1 and 10 ms
is observed, which indicates only a small number of fluctuators contribute to
the measured noise. By investigating the dependence of noise on both the
magnitude and orientation of an applied magnetic field, we find that
magnetization fluctuations in both free and reference layers are the main
sources of noise in these devices. At small fields, where the noise from the
free layer is dominant, a linear relation between the measured noise and
angular magnetoresistance susceptibility can be established.Comment: 3 pages, 2 figure
q-deformed Supersymmetric t-J Model with a Boundary
The q-deformed supersymmetric t-J model on a semi-infinite lattice is
diagonalized by using the level-one vertex operators of the quantum affine
superalgebra . We give the bosonization of the boundary
states. We give an integral expression of the correlation functions of the
boundary model, and derive the difference equations which they satisfy.Comment: LaTex file 18 page
- …