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Abstract: A skeletal mechanism with 54 species and 269 reactions was developed to predict 16 

pyrolysis and oxidation of n-dodecane as a diesel fuel surrogate involving both high-temperature 17 

(high-T) and low-temperature (low-T) conditions. The skeletal mechanism was developed from a 18 

semi-detailed mechanism developed at the University of Southern California (USC). Species and 19 

reactions for high-T pyrolysis and oxidation of C5-C12 were reduced by using reaction flow analysis, 20 

isomer lumping, and then merged into a skeletal C0-C4 core to form a high-T sub-mechanism. 21 

Species and lumped semi-global reactions for low-T chemistry were then added to the high-T sub-22 

mechanism and a 54-species skeletal mechanism is obtained. The rate parameters of the low-T 23 

reactions were tuned against a detailed mechanism by the Lawrence Livermore National Laboratory 24 

(LLNL), as well as the Spray A flame experimental data, to improve the prediction of ignition delay 25 

at low-T conditions, while the high-T chemistry remains unchanged. The skeletal mechanism was 26 
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 2 

validated for auto-ignition, perfect stirred reactors (PSR), flow reactors and laminar premixed 1 

flames over a wide range of flame conditions. The skeletal mechanism was then employed to 2 

simulate three-dimensional turbulent spray flames at compression ignition engine conditions and 3 

validated against experimental data from the Engine Combustion Network (ECN). 4 

Keywords: n-dodecane; surrogate; spray flames; ignition delay; skeletal mechanism 5 
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1. Introduction 7 

Accurate prediction of diesel engine combustion requires realistic chemical kinetics. However, diesel 8 

fuels consist of a large number of components and involve an even larger number of intermediate species 9 

and reactions during the combustion process, and thus it is difficult to employ fully detailed mechanisms 10 

in practical engine simulations as the computational cost would be intractable. As a simplification, surrogate 11 

mixtures with one or a few components have been developed to mimic the physicochemical behaviors of 12 

the real diesel fuels [1]. For instance, n-dodecane features a molecular size close to that of average diesel 13 

components, and has been employed recently as a surrogate fuel to model diesel fuel combustion [2-12]. 14 

Detailed mechanisms for large hydrocarbons, e.g. n-dodecane, can consist of thousands of species and 15 

reactions when low temperature (low-T) chemistry is involved [13-17]. For instance, the detailed 16 

mechanism developed by Westbrook et al. [14] for n-alkanes from n-octane to n-hexadecane consists of 17 

2775 species and 11,173 reactions. Such large mechanisms need to be reduced for computationally tractable 18 

three-dimensional (3-D) simulations. 19 

Mechanism reduction has been extensively studied in the last few decades and a number of reduction 20 

methodologies have been brought up [18]. Reduced mechanisms can be obtained by removing unimportant 21 

species and reactions from the detailed mechanisms and lumping of similar species and reactions, using 22 

such methods as reaction flow analysis (RFA) [19], sensitivity analysis [20-22], principal component 23 

analysis (PCA) [23], detailed reduction [24], directed relation graph (DRG) [25-28] and variants[29-31], 24 

path flux analysis (PFA) [32] and isomer-lumping [33,34]. However, reduced mechanisms for practical 25 

engine fuels with low-T chemistry obtained by such methods may still be large [2,35]. For example, a 26 
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skeletal mechanism for n-dodecane developed by Luo et al. [2] consists of 106 species and 420 reactions. 1 

The mechanism was developed using DRG with expert knowledge (DRGX) [36] and DRGASA [30] based 2 

on a detailed LLNL mechanism [13]. This mechanism and its variants [7, 8] have been coupled to different 3 

turbulent combustion models in Spray A flame simulations [5,7-11] and compared with the experimental 4 

data from the Engine Combustion Network (ECN). Narayanaswamy et al. [37] reduced the detailed LLNL 5 

mechanism to a skeletal n-dodecane mechanism with 255 species and 2289 reactions through multi-stage 6 

reduction strategy involving DRGEP [29] and chemical lumping [33]. The reduced mechanism was 7 

implemented in a tabulated-chemistry combustion model by Ayyapureddi et al. [38] to simulate the Spray 8 

A flames. D’Errico et al. [39] developed a reduced mechanism of n-dodecane using a reduction algorithm 9 

combining sensitivity and flux analysis starting from a much smaller detailed mechanism that consists of 10 

435 species and 13,532 reactions. This mechanism was also used to simulate the Spray A flames for 11 

validation under engine-relevant conditions. These mechanisms are still relatively large and can be 12 

expensive for engine simulations, especially when the mechanisms are coupled to advanced combustion 13 

models [5, 7, 9,10], or high-fidelity LES studies [11]. More importantly, all of these reduced mechanisms 14 

show increased errors in low ambient temperature conditions for Spray A flames, and thus a compact and 15 

more accurate mechanism is needed for engine simulations. 16 

In the present work, multiple reduction methods, including RFA and isomer-lumping, will be employed 17 

to obtain a skeletal mechanism for n-dodecane based on a semi-detailed mechanism developed by You et 18 

al. [40]. The semi-detailed mechanism consists of 171 species and 1306 reactions and has been widely 19 

validated, which is a good candidate to start with. Semi-global reactions for low-T chemistry are merged to 20 

the skeletal mechanism and subsequently optimized to better predict the negative temperature coefficient 21 

(NTC) behavior. The final mechanism consists of 54 species and 269 reactions in the skeletal form and is 22 

validated against detailed mechanisms and available experimental data. The mechanism is further tuned for 23 

and applied in 3-D lifted diesel spray flame simulations. 24 
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2. Mechanism development 1 

2.1 Skeletal mechanism development 2 

For a range of conditions in ignition and combustion, the kinetics of fuel decomposition to smaller 3 

fragments, which is described by C5-C12 sub-mechanism, is always fast and can be decoupled from the 4 

oxidation kinetics of the H2 and C1-C4 fragments [40]. In the development of the skeletal mechanism, the 5 

C5-C12 sub-mechanism from a detailed mechanism is firstly simplified by eliminating unimportant species 6 

and reactions, and isomer lumping is also employed. The simplified C5-C12 sub-mechanism is then merged 7 

into the simplified H2/CO/C1-C4 base mechanism. Lumped low-T reactions are then added and tuned, 8 

resulting in an optimized skeletal mechanism with 54 species and 269 reactions. The reduction and tuning 9 

procedure is further discussed in the following. 10 

The detailed C5-C12 mechanism developed by You et al. [40] consists of 60 species and 522 reactions. 11 

In the present study, reduction is based on data sampled from homogeneous, adiabatic, isobaric reactors. 12 

The parameter range covers pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 13 

800–1600 K. RFA is first employed to quantify the contribution of each reaction to the generation and 14 

consumption of each species. Analysis is conducted from the reactant n-dodecane as the starting point. 15 

Reaction pathways that are not important to the consumption of n-dodecane are removed along with the 16 

species that the path leads to. Species associated with reaction pathways contributing e.g. 95% of the total 17 

consumption of n-dodecane are retained. This reduction is performed successively until all the retaining 18 

C5-C12 species find their main pathways to translate into C1-C4 fragments. By further applying radical 19 

isomers equilibrium assumptions [34], isomers of n-dodecyl and other alkyls are lumped to three and one 20 

representatives, respectively. The reduced C5-C12 sub-mechanism obtained after performing species and 21 

reactions elimination and isomer lumping consists of 18 species and 60 reactions. It is worth noting that 22 

fuel cracking process goes fast during the oxidation of n-dodecane and many intermediates are in steady 23 

state, only the main reaction pathways that are important for the decomposition of n-dodecane to fragments 24 

are needed to reproduce this process. 25 
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In order to obtain a compact C0-C4 sub-mechanism, the C0-C4 core in a reduced high-T mechanism for 1 

n-dodecane oxidation in Vie et al. [41] is adopted. This core is reduced from USC-MECH II (111 species 2 

and 784 reactions) [42] for high temperature oxidation (high-T). Two species, namely C4H7 and pC4H9, and 3 

the involved reactions are added to accommodate the C5-C12 sub-mechanism and more accurately predict 4 

the C4 species concentrations in pyrolysis, which was not considered by Vie et al. [41], resulting in a new 5 

C0-C4 core with 32 species and 191 reactions.  6 

In the end, a semi-global scheme involving 4 species and 18 reactions for low-T chemistry of n-decane 7 

developed by Bikas and Peters [43] is modified to be suitable for n-dodecane and appended to the skeletal 8 

mechanism to capture the NTC behavior. Transition between low and high temperatures showing the 9 

negative temperature dependence can be well reproduced by applying the Low-T sub-mechanism with 10 

lumped reaction steps, which is rather efficient for practical engine simulations [43] and has been fully 11 

investigated for n-heptane in [44, 45]. A 54-species skeletal mechanism (SK54a) is thereby obtained, which 12 

can be found in the supplementary material. 13 

2.2 Need for further tuning 14 

The ignition delay time of SK54a is compared with experimental measurement by Vasu et al. [46] and 15 

detailed mechanisms [13, 40] in Fig. 1. Simulations were performed under constant-pressure, adiabatic 16 

conditions by the Senkin program package [47]. It is seen that the ignition delay time at low-T (~700 K) is 17 

significantly over-predicted by the You et al. mechanism [40] and SK54a while predictions by  the LLNL 18 

[13] show improved agreement with experimental data.  19 

3-D simulations of Spray A flames are further performed by a three-dimensional computational fluid 20 

dynamics code CONVERGE with the flame condition listed in Table 1. The simulation setup has been 21 

reported in our previous studies [9, 48] and will be briefly described here. The Reynolds-averaged Navier-22 

Stokes (RANS) method is used along with the Re-normalization Group (RNG) k-ε turbulence model [49]. 23 

The traditional Lagrangian-Eulerian method is employed, where the liquid phase is treated as Lagrangian 24 

discrete parcels and the gas-phase is solved on a Eulerian mesh. Source terms are used to exchange mass, 25 

momentum, and energy between the two-phases. The “blob” injection method [50] is used with the Kelvin-26 
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Helmholtz and Rayleigh-Taylor (KH-RT) model [51, 52] for primary and droplet secondary breakup. A 1 

dynamic drag model [53] was used to account for the droplet drag. Droplet evaporation is modeled using 2 

the Frossling correlation [54]. The gas phase reaction is modeled by a delta function combustion model 3 

[55]. The computational region is a cube with dimension of 108 mm in each direction. Adaptive mesh 4 

refinement (AMR) is employed to refine the mesh. The minimum cell size is 0.25 mm with peak cell counts 5 

in the order of one million. Based on a previous study, this resolution is deemed to be grid convergent for 6 

RANS calculations [56]. Lift-off length (LOL) and ignition delay data measured under a wide range of 7 

ambient conditions are used for validation of the developed n-dodecane skeletal mechanism. The conditions 8 

involve ambient gas temperature of 800-1100 K, fuel injection pressure of 150 MPa, ambient oxygen 9 

concentration of (XO2) 15%, ambient gas density of 22.8 Kg/m3. Ignition delay obtained using SK54a and 10 

the previous 106-species mechanism (SK106) [2] are compared with the ECN data [57-59] in Fig. 2 for 11 

different ambient temperatures. It is seen that the predictions at 1100 K and 1000 K are better for the SK54a 12 

mechanism, showing an advantage of SK54a at high temperatures. At 800 K, SK54a however significantly 13 

over-predicts the ignition delay (which is longer than 6 ms and not shown here), showing the need for 14 

further tuning of the semi-global low-T reactions. 15 

2.3 Mechanism Tuning  16 

Mechanism tuning is conducted against the detailed LLNL mechanism in auto-ignition. Although there 17 

are uncertainties in the detailed mechanism as well but at least with this approach the tuned mechanism will 18 

match a published detailed one, wherever experimental data is rare and more scattered. Simulations are 19 

performed under representative conditions of pressure p = 20 bar, initial temperature T0 = 800 K and various 20 

equivalence ratios as shown in Fig. 3. It is seen that the ignition delay time is over-predicted by SK54a at 21 

lean conditions, while better agreement is observed for rich mixtures. As a result, ignition delay in Spray A 22 

flames predicted using SK54a at T = 800 K is expected to be longer than that of SK106 which is reduced 23 

from LLNL.  24 

Sensitivity analysis is then performed using SK54a at p = 20 bar, φ = 0.5, 1.0, 2.0, and T0 = 800 K in 25 

the NTC regime to identify the reactions important for low-T ignition. Sensitivity Coefficients (SC) are 26 
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defined as the resulting percentage change in the ignition delay time (τ) by doubling the rate constant of the 1 

ith reaction, ki [60].  2 

𝑆𝑆𝑆𝑆𝑖𝑖 =
𝜏𝜏(2𝑘𝑘𝑖𝑖) − 𝜏𝜏(𝑘𝑘𝑖𝑖)

𝜏𝜏(𝑘𝑘𝑖𝑖)
 3 

Eight reactions with the largest SC are selected and summarized in Fig. 4. Reactions with positive SC 4 

decelerate ignition and make ignition delays longer, and those with negative SC accelerate ignition and 5 

result in shorter ignition delays. Sensitivity analysis is also performed under other engine relevant 6 

conditions, for example p = 50 bar and 80 bar, which shows the same tendency as in p = 20 bar and is not 7 

showing here.   8 

It can be seen from Fig. 4 that ignition delay times under fuel rich conditions (φ = 2.0) have larger 9 

sensitivity to Low-T reactions (R3, R4, R5) than lean conditions (φ = 0.5), which makes it impossible to 10 

change ignition delay time at lean conditions without affecting rich conditions by tuning these reactions. 11 

R1, R2, R6, R7 and R8 are involved in the high-T sub-mechanism and cannot be changed. Then we 12 

observed that R1 is more sensitive for lean conditions, for the formation of vinoxy radical (CH2CHO) 13 

facilitates the chain branching of the overall reactivity and the facilitation is more inclined in lean conditions 14 

than rich conditions [60]. Although R1 cannot be tuned for its significant influence to high temperature 15 

oxidation, decomposition reaction of ketohydroperoxide OC12H23OOH (R9) can be tuned to accelerate 16 

CH2CHO formation which leads to small species through one step reaction (OC12H23OOH → 17 

CH2O+3C2H4+C2H5+C2H3CHO+OH). As the products of R9 are appointed arbitrarily with reference to 18 

Bikas and Peters [43], the OC12H23OOH decomposition reaction is changed to the following formation: 19 

OC12H23OOH → 3C2H4+C2H5+2CH2CHO+OH, to produce vinoxy radicals (CH2CHO) that can facilitate 20 

the chain branching of low temperature reactivity. And the rate constant of this reaction is tuned down by 21 

a factor of two to accommodate the new mechanism, resulting in SK54b mechanism, which can be found 22 

in the supplementary material. Performance of SK54b can be seen in Fig. 3, which shows improvement 23 

after the above tuning.  24 
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The tuned mechanism (SK54b) was then employed in 3-D Spray A flame simulations, and predictions 1 

of ignition delay time are shown in Fig. 5. Over-prediction of ignition delay by ~25% is still observed at 2 

the 800 K ambient temperature, which is also observed with SK106 in Fig.2. Since the first stage ignition 3 

was found to occur in the lean mixtures and the main ignition in rich mixture [11], ignition delay of rich 4 

cases (e.g., φ = 2.0) at 800 K is further tuned down by ~25% using another round of reaction tuning based 5 

on sensitivity analysis, resulting in a final mechanism (SK54).  6 

The second round of sensitivity analysis is performed using SK54b to identify important low-T 7 

reactions that are sensitive to ignition delay times at p = 20 bar, φ = 0.5, 1.0, 2.0 and T0 = 800 K, 900 K. 8 

Selected reactions with high sensitivities are shown in Fig. 6. It can be seen that R2 mostly facilitates 9 

ignition in all investigated cases with negative sensitivity coefficient. And R6 accelerates ignition of fuel 10 

rich condition and decelerates ignition of fuel lean condition at T0 = 800 K, which however has little 11 

influence on ignition delay time at T0 = 900 K. Therefore, tuning up rate constants of R2 and R6 will result 12 

in a further decrease of ignition delay time at φ = 2.0, T0 = 800 K and ignition delay times at T0 = 900 K and 13 

φ = 0.5, T = 800 K nearly unaffected. The tuning of these two reactions (R2 and R6) is conducted through 14 

careful trial and error, leading to the final mechanism (SK54), which can be found in the supplementary 15 

material. Performance of SK54 after this round of tuning can be found in Fig. 5. Improvement achieved can 16 

be seen here that ignition delay time at T0 =800 K can be better reproduced by SK54.  17 

3. Mechanism Validation 18 

3.1 Validation for elementary reactors and flames 19 

The mechanism is first validated for shock tube ignition delay data [46,61] at various pressures and 20 

equivalence ratios. Fig. 7 shows comparison between experimental data and predicted ignition delay for 21 

pressure of 20 bar and 50 bar, and various equivalence ratios. It is seen that the present mechanism agrees 22 

well with the experimental data, and the overall discrepancy is smaller than that using the detailed LLNL 23 

mechanism due to the tuning of low-T chemistry. It is therefore expected that the auto-ignition delay of 24 
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homogeneous mixtures can be more accurately captured for flames that fall within the above parameter 1 

range, which is relevant to the Spray A flame conditions.  2 

To further verify the performance of the mechanisms, especially the simplified C5-C12 fuel cracking 3 

sub-mechanism, pyrolysis of n-dodecane in stirred reactors [62] and flow reactors [63] was simulated with 4 

the present mechanism and compared with the experimental data by Herbinet et al. [64] and Dahm et al. 5 

[65]. Fig. 8 shows the comparison of the n-dodecane conversion rate calculated with different mechanisms 6 

[13, 40] in comparison with experimental data. Species profiles during the pyrolysis processes are further 7 

compared in Figs. 9-10. It is seen that the reduced mechanism shows overall similar accuracy in the different 8 

pyrolysis cases to that of the more detailed You et al. mechanism, for these two mechanisms share the high 9 

temperature chemistry, while the LLNL mechanism shows overall larger discrepancies.   10 

Figure 11 shows extended validations of  the laminar flame speed of n-dodecane/air mixtures during 11 

one-dimensional (1-D) flame simulations [66] evaluated using SK54 and You et al. mechanism [40], in 12 

comparison with experimental data in literature [67-69]. Agreement between SK54 and You et al. 13 

mechanism is of the order of the scatter of the experimental data at various conditions of pressures, inlet 14 

temperatures and equivalence ratios. This is expected since the flame speed is primarily controlled by high 15 

temperature chemistry, while You et al. mechanism and SK54 share the high temperature C0-C4 core, which 16 

has been extensively validated against flame speed data, although some discrepancy exists for the 17 

simplification. Also, the present skeletal mechanism is primarily developed for simulations of diesel engine 18 

relevant conditions for which absolutely accurate prediction of laminar flame speed is not so necessary [2]. 19 

3.2 Validation for 3-D spray flame simulations 20 

The newly developed skeletal mechanism SK54 is further applied to simulate spray flames. The 21 

simulation results are compared with experimental data performed under compression-ignition (CI) engine 22 

conditions from the ECN [57,70-72]. The experimental and computational configurations are shown in 23 

Table 1. Details of the 3D simulations are described in section 2.2. 24 
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Figure 12 shows the comparison of experimental data and predicted ignition delay and LOL at fuel 1 

injection pressure of 150 MPa, ambient oxygen concentration of (XO2) 15%, ambient gas density of 22.8 2 

Kg/m3 and various ambient temperatures. It is seen from Fig. 12a that the ignition delays are well 3 

reproduced at high temperatures (T > 1000 K), indicating the high fidelity of the high-T sub-mechanism in 4 

the skeletal mechanism. Some discrepancies are observed at low-T conditions wherein ignition delays are 5 

under-predicted at ambient temperatures of 900 K and 850 K, and slightly over-predicted at 800 K. The 6 

differences may be due to the simplification of the lumped low-T oxidation sub-mechanism. It is noted that 7 

the prediction at 800 K is within the experimental uncertainty range. The LOL comparison is reported in 8 

Fig. 12b. It is seen that the present mechanism accurately reproduces the experimental LOL data at both 9 

low and high temperature conditions. Overall, the predictions of the present mechanism are reasonably 10 

good compared to the measurements for the wide range of ambient temperatures investigated.  11 

Figures 13 and14 show the comparisons of ignition delay and LOL between the experimental data and 12 

predictions at ambient gas temperature of 900 K, ambient gas density of 22.8 Kg/m3, different fuel injection 13 

pressures and ambient oxygen concentrations. Overall, the simulations capture the experimental trends well. 14 

As the present mechanism under-predicts ignition delay at the condition T=900 K, all cases in Fig. 13a 15 

show about 10-20% shorter ignition delay time compared to the experimental data. Similar observation is 16 

made in Fig. 14a also at different oxygen concentrations. However, the predictions of LOL presented in 17 

Figs. 13b and 14b are in good agreement with experiments.  18 

Comparisons of ignition delay and LOL at ambient gas temperature of 900 K, fuel injection pressure 19 

of 150 MPa, ambient oxygen concentration of (XO2) 15% and different ambient densities are shown in Fig. 20 

15. Again, the ignition delay is under-predicted with larger discrepancies at lower ambient densities. 21 

Overall, the ignition delay and LOL at these ambient densities are reasonably reproduced by the skeletal 22 

kinetic mechanism.  23 

4. Conclusions 24 
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A compact skeletal mechanism with 54 species and 269 reactions was developed for n-dodecane using 1 

a hybrid and decoupling approach. The high temperature C5-C12 mechanism module is firstly simplified 2 

from the detailed mechanism of You et al. [40] by eliminating unimportant species and reactions and isomer 3 

lumping, guided by RFA. The C5-C12 sub-mechanism is then merged to a reduced C0-C4 core based on the 4 

USC-Mech II [42]. Semi-global reactions for NTC chemistry are added and tuned against the detailed 5 

LLNL mechanism and experimental data to eventually obtain a 54-species skeletal mechanism.  6 

The tuned mechanism was validated against experimental data for shock tubes, stirred reactors, flow 7 

reactors, and laminar flame speed, and compared with other mechanisms. It is shown that the skeletal 8 

mechanism performs well over a wide range of parameters in elementary flame experiments. Furthermore, 9 

the skeletal mechanism was applied for 3-D Spray A flame simulations. Comparison with experimental 10 

data obtained from the ECN shows that the ignition delay and flame LOL are reasonably well reproduced 11 

by the tuned skeletal mechanism under various conditions, thus providing a valid option for efficient and 12 

accurate multi-dimensional engine combustion simulations. 13 
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