79 research outputs found

    Approaching the Intrinsic Bandgap in Suspended High-Mobility Graphene Nanoribbons

    Full text link
    We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon(GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V-1 s-1 and an intrinsic band gap. The experimentally derived bandgap is in quantitative agreement with the results of our electronic-structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges.Comment: 22 pages, 6 figure

    Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with Polymer Electrolyte

    Full text link
    We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the polymer electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling.Comment: 17 pages, 4 figures, accepted by J. Phys.

    Room-Temperature High On/Off Ratio in Suspended Graphene Nanoribbon Field Effect Transistors

    Full text link
    We have fabricated suspended few layer (1-3 layers) graphene nanoribbon field effect transistors from unzipped multiwall carbon nanotubes. Electrical transport measurements show that current-annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates a narrow constriction in the ribbon, leading to the formation of a large band-gap and subsequent high on/off ratio (which can exceed 104). Such fabricated devices are thermally and mechanically stable: repeated thermal cycling has little effect on their electrical properties. This work shows for the first time that ambipolar field effect characteristics and high on/off ratios at room temperature can be achieved in relatively wide graphene nanoribbon (15 nm ~50 nm) by controlled current annealing.Comment: 19 pages, 6 figures, accepted for publication in Nanotechnology (2011

    Electrical Transport Properties of Graphene Nanoribbons Produced from Sonicating Graphite in Solution

    Full text link
    A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 {\mu}m were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering.Comment: 19 pages, 5 figures, accepted for publication in Nanotechnology 201

    Cardioprotective effect of Shenxiong glucose injection on acute myocardial infarction in rats via reduction in myocardial intracellular calcium ion overload

    Get PDF
    Purpose: To explore the cardioprotective effects and potential mechanisms of Shenxiong Glucose Injection (SGI) in rat acute myocardial infarction (AMI).Methods: AMI model was created by ligating left anterior descending coronary artery. After 7 days’ consecutive intravenous administration of SGI, serum samples were used to conduct biochemical analysis while hearts were excised and processed for infraction size, enzyme activity, histopathology and qPCR studies. Intracellular Ca2+ {(Ca2+)i} overload in H9c2 cells was measured by laser scanning confocal microscope (LSCM).Results: In AMI rats, pretreatment with SGI significantly ameliorated myocardial histopathologic damage. It exerted cardioprotective effect by decreasing myocardial infarct size, electrocardiogram (ECG) ST segment elevation, and CK, cTnI, BNP levels in serum. In addition, SGI significantly decreased calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMK II) mRNA expression, but increased Ca2+-Mg2+-ATPase and Na+-K+-ATPase activities in myocardium. In doxorubicin (DOX)- induced H9c2 cells injury model, SGI reversed (Ca2+)i overload to protect cells.Conclusion: The results demonstrate SGI exerts cardioprotective effect by decreasing myocardial infarct size, restoring ST segment and reversing (Ca2+)i overload. It suggests that SGI may be a new clinical candidate to treat myocardial infarction.Keywords: Shenxiong glucose injection, Tanshinol, Ligustrazine, Myocardial infarction, Intracellular Ca2+ overload, Calmodulin, Calmodulin-dependent protein kinase I

    Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling

    Get PDF
    Background: Synergistic recruitment of muscular activities is a generally accepted mechanism for motor function control, and motor dysfunction, such as cerebral palsy (CP), destroyed the synergistic electromyography activities of muscle group for limb movement. However, very little is known how motor dysfunction of CP affects the organization of the myoelectric frequency components due to the abnormal motor unit recruiting patterns.Objectives: Exploring whether the myoelectric activity can be represented with synergistic recruitment of surface electromyography (sEMG) frequency components; evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG oscillations.Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited for self-paced crawling on hands and knees. sEMG signals have been recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations are extracted via multivariate empirical mode decomposition (MEMD), and non-negative matrix factorization (NMF) method is employed to obtain synergistic pattern of these sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to quantify the time-varying recruitment of BB and TB myoelectric activity during infants crawling.Results: Three patterns of sEMG oscillation synergies with specific frequency ranges are extracted in BB and TB of CP or TD infants. The contribution of low-frequency oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05) during forward swing phase for slow contraction; however, this low-frequency oscillation synergy keep higher level during the backward swing phase crawling. For the myoelectric activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for the fast contraction in propulsive phase of CP infants crawling.Conclusion: Our results reveal that, the myoelectric activities of a muscle can be manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient curve of sEMG oscillation synergies is a potential index to evaluate the abnormal recruitment of electromyography activities affected by CP disorders

    A HALP score-based prediction model for survival of patients with the upper tract urothelial carcinoma undergoing radical nephroureterectomy

    Get PDF
    The combination of hemoglobin, albumin, lymphocyte, and platelet (HALP) score has been confirmed as an important risk biomarker in several cancers. Hence, we aimed at evaluating the prognostic value of the HALP score in patients with non-metastatic upper tract urothelial carcinoma (UTUC). We retrospectively enrolled 533 of the 640 patients from two centers (315 and 325 patients, respectively) who underwent radical nephroureterectomy (RNU) for UTUC in this study. The cutoff value of HALP was determined using the Youden index by performing receiver operating characteristic (ROC) curve analysis. The relationship between postoperative survival outcomes and preoperative HALP level was assessed using Kaplan-Meier analysis and Cox regression analysis. As a result, the cutoff value of HALP was 28.67 and patients were then divided into HALP<28.67 group and HALP≥28.67 group. Kaplan-Meier analysis and log-rank test revealed that HALP was significantly associated with overall survival (OS) (P<0.001) and progression-free survival (PFS) (P<0.001). Multivariate analysis demonstrated that lower HALP score was an independent risk factor for OS (HR=1.54, 95%CI, 1.14-2.01, P=0.006) and PFS (HR=1.44, 95%CI, 1.07-1.93, P=0.020). Nomograms of OS and PFS incorporated with HALP score were more accurate in predicting prognosis than without. In the subgroup analysis, the HALP score could also stratify patients with respect to survival under different pathologic T stages. Therefore, pretreatment HALP score was an independent prognostic factor of OS and PFS in UTUC patients undergoing RNU

    An anti-noise algorithm based on locally linear embedding and weighted XGBoost for fault diagnosis of T/R module

    No full text
    Due to the noise accompanied with fault signals, it is challenging to identify the discriminant information and the local geometric feature from the complex fault data for enhancing fault diagnosis accuracy. To address this challenge, this work proposed an anti-noise algorithm based on locally linear embedding integrated with diffusion distance and maximum correntropy criterion (DMLLE). In DMLLE, diffusion distance was adopted instead of the Euclidean distance for neighborhood construction. Meanwhile, the optimal weights were updated to reveal local geometry information based on the loss function of the maximum correntropy criterion. Subsequently, DMLLE is eventually developed to further restrain noise embedding into raw signals and obtain low dimensional features. Furthermore, weighted extreme gradient boosting is used to map the low dimensional features to the types of faults, which easily implements fault pattern recognition. Finally, two synthetic manifold datasets and fault data acquired from the transmit/receive (T/R) module are used to validate the performance of the proposed diagnosis methodology. Compared with the existing methods, the proposed diagnosis methodology generates a smoother flow structure by preserving the local neighborhood of the dataset with noises and realizes a higher accuracy of 94.41% on the T/R module dataset, which outperforms 3%–9% better than other classification models. Therefore, it can be concluded that the proposed diagnosis methodology can effectively extract intrinsic fault features by weakening the influence aroused by noise and achieve superior accuracy in fault diagnosis by addressing the problem of small sample size

    A Speech Enhancement Method Based on Multi-Task Bayesian Compressive Sensing

    No full text
    • …
    corecore