220 research outputs found

    Cognitive computation of compressed sensing for watermark signal measurement

    Get PDF
    As an important tool for protecting multimedia contents, scrambling and randomizing of original messages is used in generating digital watermark for satisfying security requirements. Based on the neural perception of high-dimensional data, compressed sensing (CS) is proposed as a new technique in watermarking for improved security and reduced computational complexity. In our proposed methodology, watermark signal is extracted from the CS of the Hadamard measurement matrix. Through construction of the scrambled block Hadamard matrix utilizing a cryptographic key, encrypting the watermark signal in CS domain is achieved without any additional computation required. The extensive experiments have shown that the neural inspired CS mechanism can generate watermark signal of higher security, yet it still maintains a better trade-off between transparency and robustness

    A new type of eye movement model based on recurrent neural networks for simulating the gaze behavior of human reading.

    Get PDF
    Traditional eye movement models are based on psychological assumptions and empirical data that are not able to simulate eye movement on previously unseen text data. To address this problem, a new type of eye movement model is presented and tested in this paper. In contrast to conventional psychology-based eye movement models, ours is based on a recurrent neural network (RNN) to generate a gaze point prediction sequence, by using the combination of convolutional neural networks (CNN), bidirectional long short-term memory networks (LSTM), and conditional random fields (CRF). The model uses the eye movement data of a reader reading some texts as training data to predict the eye movements of the same reader reading a previously unseen text. A theoretical analysis of the model is presented to show its excellent convergence performance. Experimental results are then presented to demonstrate that the proposed model can achieve similar prediction accuracy while requiring fewer features than current machine learning models

    一种基于模糊成像机理的QR码图像快速盲复原方法.

    Get PDF
    A fast blind restoration method of QR code images was proposed based on a blurred imaging mechanism. On the basis of the research on the centroid invariance of the blurred imaging diffuse light spots, the circular finder pattern is designed. When the image is blurred, the centroid of the pattern and the position of the QR code symbol can be quickly detected by methods such as connected components. Moreover, combined with step edge characteristics, gradient and intensity characteristics, edge detection technology, and optical imaging mechanism, the defocus radius of the blurred QR code image can be quickly and accurately estimated. Furthermore, the Wiener filter is applied to restore the QR code image quickly and effectively. Compared with the other algorithms, the proposed method has improved deblurring results in both structural similarity and peak signal-to-noise ratio, especially in the recovery speed. The average recovery time is 0.329 2 s. Experimental results show that this method can estimate the defocus radius with high accuracy and can quickly realize the blind restoration of QR code images. It has the advantages of rapidity and robustness, which are convenient for embedded hardware implementation and suitable for barcode identification-related industrial Internet of Things application scenarios

    Employing NIR-SWIR hyperspectral imaging to predict the smokiness of Scotch whisky

    Get PDF
    Scotch Whisky makes a significant contribution to the UK's food and drinks export. The flavour of this high quality spirit is derived naturally from the whisky making process, with smoky aromas being a key character of certain Scotch whiskies. The level of smokiness is determined by the amount of phenolic compounds in the spirit. Phenols are introduced by exposing the barley malt to peat smoke during the kilning process. The current techniques to determine the levels of phenols, such as High Performance Liquid Chromatography (HPLC), are time consuming as they require distillation of the malt prior to analysis. To speed up this process and enable real-time detection before processing, the possibilities of Near-infrared to Short-wave-infrared (NIR-SWIR) Hyperspectral Imaging (HSI) to detect these phenols directly on malted barley are explored. It can be shown that via regression analysis, various levels of phenol concentration used as working levels for whisky production could be estimated to a satisfying degree. To further optimise industrial application, a hyperspectral band selection algorithm is applied that yields good results and reduces computational cost and may open possibilities to employ multispectral rather than hyperspectral cameras in future applications

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Novel gumbel-softmax trick enabled concrete autoencoder with entropy constraints for unsupervised hyperspectral band selection.

    Get PDF
    As an important topic in hyperspectral image (HSI) analysis, band selection has attracted increasing attention in the last two decades for dimensionality reduction in HSI. With the great success of deep learning (DL)-based models recently, a robust unsupervised band selection (UBS) neural network is highly desired, particularly due to the lack of sufficient ground truth information to train the DL networks. Existing DL models for band selection either depend on the class label information or have unstable results via ranking the learned weights. To tackle these challenging issues, in this article, we propose a Gumbel-Softmax (GS) trick enabled concrete autoencoder-based UBS framework (CAE-UBS) for HSI, in which the learning process is featured by the introduced concrete random variables and the reconstruction loss. By searching from the generated potential band selection candidates from the concrete encoder, the optimal band subset can be selected based on an information entropy (IE) criterion. The idea of the CAE-UBS is quite straightforward, which does not rely on any complicated strategies or metrics. The robust performance on four publicly available datasets has validated the superiority of our CAE-UBS framework in the classification of the HSIs

    A new cost function for spatial image steganography based on 2D-SSA and WMF.

    Get PDF
    As an essential tool for secure communications, adaptive steganography aims to communicate secret information with the least security cost. Inspired by the Ranking Priority Profile (RPP), we propose a novel two-step cost function for adaptive steganography in this paper. The RPP mainly includes three rules, i.e. Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. We use the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in designing the two-step cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, we deploy the Spreading rule to smooth the resulting image produced by 2D-SSA with WMF. Extensive experiments have shown the efficacy of the proposed method, which has improved performance over four benchmarking approaches against non-shared selection channel attack. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. Besides, the proposed approach is much faster than other model-based methods

    Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement.

    Get PDF
    Visual attention is a kind of fundamental cognitive capability that allows human beings to focus on the region of interests (ROIs) under complex natural environments. What kind of ROIs that we pay attention to mainly depends on two distinct types of attentional mechanisms. The bottom-up mechanism can guide our detection of the salient objects and regions by externally driven factors, i.e. color and location, whilst the top-down mechanism controls our biasing attention based on prior knowledge and cognitive strategies being provided by visual cortex. However, how to practically use and fuse both attentional mechanisms for salient object detection has not been sufficiently explored. To the end, we propose in this paper an integrated framework consisting of bottom-up and top-down attention mechanisms that enable attention to be computed at the level of salient objects and/or regions. Within our framework, the model of a bottom-up mechanism is guided by the gestalt-laws of perception. We interpreted gestalt-laws of homogeneity, similarity, proximity and figure and ground in link with color, spatial contrast at the level of regions and objects to produce feature contrast map. The model of top-down mechanism aims to use a formal computational model to describe the background connectivity of the attention and produce the priority map. Integrating both mechanisms and applying to salient object detection, our results have demonstrated that the proposed method consistently outperforms a number of existing unsupervised approaches on five challenging and complicated datasets in terms of higher precision and recall rates, AP (average precision) and AUC (area under curve) values

    Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval

    Get PDF
    Content-based image retrieval (CBIR) has been an active research theme in the computer vision community for over two decades. While the field is relatively mature, significant research is still required in this area to develop solutions for practical applications. One reason that practical solutions have not yet been realized could be due to a limited understanding of the cognitive aspects of the human vision system. Inspired by three cognitive properties of human vision, namely, hierarchical structuring, color perception and embedded compressive sensing, a new CBIR approach is proposed. In the proposed approach, the Hue, Saturation and Value (HSV) color model and the Similar Gray Level Co-occurrence Matrix (SGLCM) texture descriptors are used to generate elementary features. These features then form a hierarchical representation of the data to which a two-dimensional compressive sensing (2D CS) feature mining algorithm is applied. Finally, a weighted feature matching method is used to perform image retrieval. We present a comprehensive set of results of applying our proposed Hierarchical Visual Perception Enabled 2D CS approach using publicly available datasets and demonstrate the efficacy of our techniques when compared with other recently published, state-of-the-art approaches

    Multiscale 2-D singular spectrum analysis and principal component analysis for spatial–spectral noise-robust feature extraction and classification of hyperspectral images.

    Get PDF
    In hyperspectral images (HSI), most feature extraction and data classification methods rely on corrected dataset, in which the noisy and water absorption bands are removed. This can result in not only extra working burden but also information loss from removed bands. To tackle these issues, in this article, we propose a novel spatial-spectral feature extraction framework, multiscale 2-D singular spectrum analysis (2-D-SSA) with principal component analysis (PCA) (2-D-MSSP), for noise-robust feature extraction and data classification of HSI. First, multiscale 2-D-SSA is applied to exploit the multiscale spatial features in each spectral band of HSI via extracting the varying trends within defined windows. Taking the extracted trend signals at each scale level as the input features, the PCA is employed to the spectral domain for dimensionality reduction and spatial-spectral feature extraction. The derived spatial-spectral features in each scale are separately classified and then fused at decision-level for efficacy. As our 2-D-MSSP method can extract features and simultaneously remove noise in both spatial and spectral domains, which ensures it to be noise-robust for classification of HSI, even the uncorrected dataset. Experiments on three publicly available datasets have fully validated the efficacy and robustness of the proposed approach, when benchmarked with 10 state-of-the-art classifiers, including six spatial-spectral methods and four deep learning classifiers. In addition, both quantitative and qualitative assessment has validated the efficacy of our approach in noise-robust classification of HSI even with limited training samples, especially in classifying uncorrected data without filtering noisy bands
    corecore