
WANG, X., ZHAO, X. and REN, J. 2019. A new type of eye movement model based on recurrent neural networks for
simulating the gaze behavior of human reading. Complexity [online], 2019: complex deep learning and evolutionary
computing models in computer vision, article ID 8641074. Available from: https://doi.org/10.1155/2019/8641074

Copyright © 2019 Xiaoming Wang et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This document was downloaded from
https://openair.rgu.ac.uk

A new type of eye movement model based on
recurrent neural networks for simulating the

gaze behavior of human reading.

WANG, X., ZHAO, X. and REN, J.

2019

https://doi.org/10.1155/2019/8641074

Research Article
A New Type of Eye Movement Model Based on Recurrent Neural
Networks for Simulating the Gaze Behavior of Human Reading

Xiaoming Wang ,1 Xinbo Zhao ,1 and Jinchang Ren 2

1National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer
Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK

Correspondence should be addressed to Xinbo Zhao; xbozhao@nwpu.edu.cn

Received 6 November 2018; Revised 11 February 2019; Accepted 27 February 2019; Published 24 March 2019

Guest Editor: Jungong Han

Copyright © 2019 XiaomingWang et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traditional eye movement models are based on psychological assumptions and empirical data that are not able to simulate eye
movement on previously unseen text data. To address this problem, a new type of eye movement model is presented and tested in
this paper. In contrast to conventional psychology-based eyemovementmodels, ours is based on a recurrent neural network (RNN)
to generate a gaze point prediction sequence, by using the combination of convolutional neural networks (CNN), bidirectional
long short-term memory networks (LSTM), and conditional random fields (CRF). The model uses the eye movement data of a
reader reading some texts as training data to predict the eye movements of the same reader reading a previously unseen text.
A theoretical analysis of the model is presented to show its excellent convergence performance. Experimental results are then
presented to demonstrate that the proposed model can achieve similar prediction accuracy while requiring fewer features than
current machine learning models.

1. Introduction

Using computers to simulate humans or to reproduce certain
intelligent behaviors related to human vision is a typical
computer vision task [1], such as simulating eye movements
in reading. However, reading is complex cognitive behavior
and the underlying cognitive process occurs only in the brain
[2]. Modeling such behavior requires obtaining some explicit
indicators via such methods as eye tracking.

When reading a text, the eyes of a skilled reader do not
move continuously over the lines of text. Instead, reading
proceeds by alternating between fixations and rapid eye
movements called saccades [3]. This behavior is determined
by the physiological structure of the human retina. Most of
the optic nerve cells are concentrated in the fovea and only
when the visual image falls in this area can it be “seen”
clearly. Unfortunately, the fovea only provides about a 5-
degree field of view [4].Therefore, the reader needs to change
the fixation point through successive saccades so that the next
content falls on the fovea region of the retina. By analyzing
eye movements during reading, we can quantify the reader’s

actions andmodel for reading. Eye tracking helps researchers
to determine where and how many times subjects focus on
a certain word, along with their eye movement sequences
from one word to another [5]. Figure 1 shows an example eye
movement trajectory from an adult reader.

Models of eye movement control have been studied in
cognitive psychology [6–9]. Researchers integrated a large
amount of experimental data and proposed a variety of eye
movement models such as easy-rider (E-Z) reader [10] and
saccade generation with inhibition by foveal targets (SWIFT)
[11]. Although these eye movement models typically have
parameters that are fit to empirical data, their predictions are
rarely tested on unseen data [12]. Moreover, their predictions
are usually averaged over a group of readers, while eye
movement patterns vary significantly between individuals
[13]. Predicting the actual eye movements that an individual
will make while reading a new text is arguably a challenging
problem.

Some recent work has studied eye movement patterns
from a machine learning perspective [14–17]. These studies
were inspired by recent work in natural language processing

Hindawi
Complexity
Volume 2019, Article ID 8641074, 12 pages
https://doi.org/10.1155/2019/8641074

http://orcid.org/0000-0003-3340-6122
http://orcid.org/0000-0003-2618-9289
http://orcid.org/0000-0001-6116-3194
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8641074

2 Complexity

K a t e q u i v e r e d a n d w e n t t o t h e w i n d o w

:fixation
:saccade

:regression

78ms 296ms 90ms

158ms 336ms 176ms 232ms88ms

Figure 1: Eye track of an adult reader. Black dots indicate the position of the gaze point, the number next to each dot indicates the duration
of each gaze point (in ms), and the arrow indicates the direction of the saccade.

(NLP) and are less tied to psychophysiological assumptions
about the mechanisms that drive eye movements. The work
presented in [14] was the first to apply machine learning
methods to simulate human eye movements. The authors
used a transformation-based model to predict word-based
fixation of unseen text. Reference [17] applied a conditional
random field (CRF) model to predict which words in a text
are fixated by a reader. However, traditional supervised learn-
ing requires more features and preprocessing of data, which
may lead to high latency in human-computer interaction
applications.

Aided by their parallel distributed processing paradigm,
neural networks have beenwidely used in pattern recognition
and language processing because of their parallel distribution
[18]. In 2010, Jiang [19] studied how to apply neural networks
to multiple fields and provided a review of the key litera-
ture on the development of neural networks in computer-
aided diagnosis. In 2011, Ren [20] proposed an improved
neural network classifier that introduced balanced learning
and optimization decisions, enabling efficient learning from
unbalanced samples. In 2012, Ren [21] proposed a new
balanced learning strategy with optimal decisionmaking that
enables effective learning from unbalanced samples and is
further used to evaluate the performance of neural networks
and support vector machines (SVMs).

In recent years, deep neural networks (DNN) have
become a popular topic in the field of machine learning.
DNN has successfully improved the recognition rate and
some excellent optimization algorithms and frameworks
have been proposed and applied. Guo (2018) proposed a
novel robust and general vector quantization (VQ) frame-
work to enhance both robustness and generalization of VQ
approaches [22]. Liu (2018) presented an efficient bidirec-
tional Gated Recurrent Unit (GRU) network to explore the
feasibility and the potential of mid-air dynamic gesture based
user identification [23]. Liu (2019) presented an end-to-end
multiscale deep encoder (convolution) network, which took
both the reconstruction of image pixels’ intensities and the
recovery of multiscale edge details into consideration under
the same framework [24]. Wu (2018) proposed an unsu-
pervised deep hashing framework and adopted an efficient
alternating approach to optimize the objective function [25].
Wu (2019) proposed a Self-Supervised Deep Multimodal

Hashing (SSDMH) method and demonstrated the superi-
ority of SSDMH over state-of-the-art cross-media hashing
approaches [26]. Luan (2018) developed a new type of deep
convolutional neural networks (DCNNs) to reinforce the
robustness of learned features against the orientation and
scale changes [27]. Besides, somemethods based on recurrent
networks have been proposed, developed, and studied for
natural language processing [28–30].

In this paper, we formalize the problem of simulating the
gaze behavior of human reading as a word-based sequence
labeling task (which is a classic NLP application). In the
proposedmethod, the eyemovement data of a reader reading
some texts is used as training data and a bidirectional Long
Short-Term Memory-Conditional Random Field (bi-LSTM-
CRF) neural network architecture is used to predict the eye
movement of the same reader reading a previously unseen
text. The model is focused on achieving similar prediction
accuracy while requiring fewer features than existing meth-
ods. However, it is worth emphasizing that in this study we
focus only onmodels of where the eyes move during reading,
andwewill not be concernedwith the temporal aspect of how
long the eyes remain stationary at fixated words.

The remainder of this paper is organized into the follow-
ing sections. Section 2 introduces the problem formulation.
Section 3 proves the convergence of the model. Section 4
describes the layers of our neural network architecture.
Section 5 discusses the training procedure and parameter
estimation. Section 6 demonstrates the superiority of the
proposed method with verification experiments. Section 7
concludes the paper with final remarks. Before ending the
current section, it is worth pointing out the main contribu-
tions of the paper as follows.

(i) This paper proposes and tests a new type of eyemove-
ment model based on recurrent neural networks,
which is quite different from previous research on eye
movement model.

(ii) The convergence of the RNN-based model for pre-
dicting eye movement of human reading is proved in
this paper.

(iii) An experiment of foveated rendering further demon-
strates the novelty and effectiveness of recurrent

Complexity 3

neural networks for solving the problemof simulating
the gaze behavior of human reading.

2. Problem Formulation

Experimental findings in eyemovement and reading research
suggest that eyemovements in reading are both goal-directed
and discrete [6]. This means that the saccadic system selects
visual targets on a nonrandom basis and that saccades are
directed towards particular words rather than being sent
a particular distance. Under this view, there are a number
of candidate words during any fixation, with each having
a certain probability of being selected as the target for the
subsequent saccade. For our purposes we will assume that a
probabilistic saccade model assigns a probability to fixation
sequences resulting from saccade generation over the words
in a text. Let us use the following simple representations of a
text and fixation sequence.

Let 𝑅 denote a set of readers, and text 𝑇 represent a
sequence of word tokens (text) (w1, . . . ,wn). Let 𝐹 denote
a sequence of fixation token positions in 𝑇, generated by a
reader 𝑟 (𝑟 ∈ 𝑅). The fixation token positions set 𝑆(𝐹) is the
set of token positions that removes repetitive elements from
𝐹, where 𝑆 = {S1, . . . , Sm}(1 ≤ Si ≤ n).

𝑆 (𝐹) = arg max𝑝 (𝑆 | 𝑇, 𝑟) (1)

𝑝(S | T, r) is a reader-specific distribution of eye movement
patterns given a text 𝑇. For example, the text “Kate quivered
andwent to thewindow” is represented by𝑇= (Kate, quivered,
and, went, to, the, window). A sequence of fixations in a
reader’s reading of the text which is Kate-quivered-and-went-
to-the-window is represented by 𝐹 = (1, 2, 3, 1, 2, 4, 6, 7);
and the corresponding fixation token positions set is 𝑆(𝐹) ={1, 2, 3, 4, 6, 7}.

The next object of study is the prediction of the
fixation point sequence 𝐹 based on a specific reading
event 𝐸 involving the reader 𝑅 reading the text 𝑇. The
training data consist of words and a Boolean value indi-
cating whether they are fixation words, in the form of((w1, boolFixation1),. . . , (wn, boolFixationn)).

M is a recurrent neural networks model. Given some text
as input, the purpose of this model is to generate a sequence
of fixation points that approximate human reading behavior.
We evaluate the performance of model𝑀 by comparing the
predicted fixation sequence set 𝑆

𝑀
with the actual fixation

sequence set 𝑆
𝑂
observed in a reading experiment involving

𝑅 and 𝑇. To do this, we train 𝑀 on a novel set of texts
𝑋 = {X1, . . . ,Xm} generated by a reader 𝑟 ∈ 𝑅. The goal is
to infer

𝑠∗ = arg max
𝑠∈𝑆(𝐹)

𝑝 (𝑆 | 𝑀,𝑋, 𝑟) (2)

3. Convergence Analysis

For neural networks with𝑚 hidden nodes and 𝑛 training data
samples, if the ReLU activation function is used, a previous
study in [31] has shown that, as long as 𝑚 is sufficiently
enough, the randomly initialized gradient descent algorithm

converges to the global optimal solution. In this section, by
following the gradient descent provably optimized method,
the convergence performance of our RNN-based model is
presented below.

First, we consider a recurrent neural network of the
following form:

𝑧(𝑡) = 𝑈𝑥(𝑡) + 𝑊ℎ(𝑡−1) + 𝑏 (3)

where 𝑥 is the input vector, ℎ is a hidden layer, 𝑧 is an inactive
hidden layer,𝑈 is the matrix of 𝑥(t) to ℎ(t),𝑊 is the matrix of
ℎ(t−1) to ℎ(t), and 𝑏 is the bias of the hidden layer.

Use the tanh activation function to activate all nodes of
the layer 𝑧 to the layer ℎ:

ℎ(𝑡) = 𝜙 (𝑧(𝑡)) = tanh (𝑧(𝑡)) (4)

Map the layer ℎ(t) to the layer 𝑜(t):

𝑜(𝑡) = 𝑉ℎ(𝑡) + 𝑐 (5)

where 𝑉 is the matrix of ℎ(t) to 𝑜(t). Use 𝑜(t) to derive the
predicted value 𝑦 and loss function of the model.

𝑦(𝑡) = 𝜎 (𝑜(𝑡)) = 𝑐𝑟𝑓 (o(𝑡)) (6)

𝐿 = − 𝑛∑
𝑡=1

𝐶∑
𝑘=1

𝑦𝑘(𝑡) ln (𝑦(𝑡)𝑘) (7)

where 𝑐𝑟𝑓 is an activation function,𝑇 is the transformmatrix
of 𝑦t−1 to 𝑦t, 𝑆 is the state matrix of 𝑦t, Z is a scaling factor,
and 𝜆 and 𝜇 are weights, which is defined as

𝑐𝑟𝑓 (𝑜 (𝑡)) = 1𝑍 (𝑜(𝑡)) exp (𝜆𝑇𝑦𝑡−1 ,𝑦𝑡𝑜(𝑡) + 𝜇𝑆𝑦𝑡𝑜(𝑡)) (8)

There are 3 parameters that need to be optimized, namely,
U, V, and W. Among them, the optimization process of the
two parameters of W and U needs to trace the historical
data, the parameter V is relatively simple and only needs the
current data, and then we will solve the partial derivative of
the parameter V first.

𝜕𝐿𝜕𝑉 = 𝑛∑
𝑡=1

𝜕𝐿(𝑡)𝜕𝑜(𝑡) ⋅ 𝜕𝑜(𝑡)𝜕𝑉(𝑡) (9)

The solution of the partial and partial derivatives of W and
U is relatively complicated because of the need to involve
historical data. Let us assume that there are only three
moments, and then the partial derivative of L toWat the third
moment is

𝜕𝐿(3)𝜕𝑊 = 𝜕𝐿(3)𝜕𝑜(3) 𝜕𝑜
(3)

𝜕ℎ(3) 𝜕ℎ
(3)

𝜕𝑊 + 𝜕𝐿(3)𝜕𝑜(3) 𝜕𝑜
(3)

𝜕ℎ(3) 𝜕ℎ
(3)

𝜕ℎ(2) 𝜕ℎ
(2)

𝜕𝑊
+ 𝜕𝐿(3)𝜕𝑜(3) 𝜕𝑜

(3)

𝜕ℎ(3) 𝜕ℎ
(3)

𝜕ℎ(2) 𝜕ℎ
(2)

𝜕ℎ(1) 𝜕ℎ
(1)

𝜕𝑊
(10)

It can be observed that, at some point, the partial derivative
of L to W needs to trace back all the information before this

4 Complexity

moment. We can write the general formula of L to the partial
derivative of W at time t according to formula (10):

𝜕𝐿(𝑡)𝜕𝑊 = 𝑡∑
𝑘=0

𝜕𝐿(𝑡)𝜕𝑜(𝑡) 𝜕𝑜
(𝑡)

𝜕ℎ(𝑡) (
𝑡∏
𝑗=𝑘+1

𝜕ℎ(𝑗)𝜕ℎ(𝑗−1)) 𝜕ℎ(𝑘)𝜕𝑊 (11)

𝑡∏
𝑗=𝑘+1

𝜕ℎ(𝑗)𝜕ℎ(𝑗−1) =
𝑡∏
𝑗=𝑘+1

𝑐𝑟𝑓 ⋅ 𝑊𝑠 (12)

To prove that the RNN-based model will converge, it is only
necessary to prove that there is an upper limit on the number
of incorrect training examples on the training data set. The
following lemmas are presented before the proof.

Lemma 1. If the training data set is linearly separable, then
there is a shortest distance from all training data points to the
distance separating the hyperplanes, denoted as 𝛾. Prove that‖𝑦(𝑘) − 𝑦‖22 ≤ (1 − 𝜂𝛾/2)𝑘‖𝑦(0) − 𝑦‖22 is established.
Proof. According to Cauchy inequality𝑤⋅𝑤𝑜𝑝𝑡 ≤ ‖𝑤‖⋅‖𝑤𝑜𝑝𝑡‖.

∵ 𝑤𝑘 = 𝑤𝑘−1 + 𝑥𝑡𝑦𝑡
∴ 𝑤𝑘 ⋅ 𝑤𝑜𝑝𝑡 = (𝑤𝑘−1 + 𝑥𝑡𝑦𝑡) 𝑤𝑜𝑝𝑡 ≥ 𝑤𝑘−1𝑤𝑜𝑝𝑡 + 𝜂𝛾

≥ 𝑤𝑘−2𝑤𝑜𝑝𝑡 + 2𝜂𝛾 ≥ ⋅ ⋅ ⋅ ≥ 𝑘𝛾
∴ 𝑦(𝑘) − 𝑦22 ≤ (1 − 𝜂𝛾/2)𝑘 𝑦(0) − 𝑦22

(13)

The proof is thus completed.

Lemma 2. Let 𝑅 = 4√𝑛‖𝑦 − 𝑦(0)‖2/√𝑚𝜆0, then the number
of misclassifications k of the algorithm on the training data set
satisfies the inequality ‖𝑦 − 𝑦(𝑘+1)‖22 ≤ (1 − 𝑘𝑅/2)‖𝑦 − 𝑦(𝑘)‖22.
Proof. At the k-th iteration, we have ‖𝑦(𝑘) − 𝑦‖22 ≤ (1 −𝜂𝛾/2)𝑘‖𝑦(0)−𝑦‖22. If k’=0,. . .,k, then we have for every 𝑟 ∈ [m]

𝑤𝑟(𝑘+1) − 𝑤𝑟(0)2 ≤ 4√𝑛 𝑦 − 𝑦(0)2√𝑚𝜆0 = 𝑅 (14)

Next, we calculate the difference in prediction between two
consecutive iterations.

𝑦(𝑘+1) − 𝑦(𝑘) = 1√𝑚
𝑚∑
𝑟=1

𝑎𝑟(𝜎(𝑤𝑟(𝑘+1)𝑇𝑥𝑖)
− 𝜎(𝑤𝑟(𝑘)𝑇𝑥𝑖)

(15)

As in the classical analysis of gradient descent, we also need
to bound the quadratic term.

𝑦(𝑘+1) − 𝑦(𝑘)22 ≤ 𝜂2 1𝑚 (𝑚∑
𝑟=1

𝜕𝐿 (𝑊(𝑘))

𝜕𝑤𝑟(𝑘)
2)
2

≤ 𝜂2𝑛2 𝑦 − 𝑦(𝑘)22
(16)

With these estimates, we are ready to prove the theorem.

𝑦 − 𝑦(𝑘+1)22 = 𝑦 − 𝑦(𝑘) − (𝑦(𝑘+1) − 𝑦(𝑘))22
≤ (1 − 𝜂𝜆0 + 2𝜂𝑛2𝑅 + 2𝜂𝑛3/2𝑅 + 𝜂2𝑛2) 𝑦 − 𝑦(𝑘)22
≤ (1 − 𝑘𝑅2) 𝑦 − 𝑦(𝑘)22

(17)

This indicates that there is an upper limit on the number
of misclassifications, and the algorithm will converge when
the final number ofmisclassifications reaches the upper limit.
So if the data is linearly separable, then the model does
converge.

4. Network Architecture

In this section, we describe a CNN-LSTM-CRF-based net-
work architecture for reading eye movement prediction,
consisting of a word embedding layer, a CNN layer, a
bidirectional LSTM layer, and a CRF layer from bottom to
top.

4.1. Word Embedding and CNN Layer. It was shown in [28]
that word embedding plays a crucial role in improving the
performance of sequence labeling. We vectorize the text
corpus by converting each text into a sequence of integers
(each integer is an index of themark in the dictionary), where
the coefficients of each mark can be based on the number of
words.

Previous studies, e.g., [32, 33], showed that convolutional
neural networks (CNNs) are effective methods for extracting
word form information from characters in a word and
encoding it into a neural representation. Our CNN is similar
to that used in [33], except that we use not only word
embedding as CNN input, but also the linguistic features of
the word.

4.2. RNN Layer. One of the key features of recurrent neural
networks (RNNs) is that they can be used to connect past
information to current tasks, such as inferring themeaning of
a current word fromprevious words. However, a RNN cannot
connect past information when the gap between the relevant
information and the current position increases.

Long Short-Term Memory (LSTM) network is a special
RNN that can learn long-term dependencies through special-
ized design. A LSTM is also a multilayered type of the neural
network, in which the single neural network layer contains
four interactive sublayers, as shown in Figure 2.

In many sequence labeling tasks, it is best to have access
to past (left) and future (right) contexts, while LSTM’s hidden
state does not get information from the future. An excellent
solution is the bidirectional LSTM (bi-LSTM) [34], whose
validity has been proven in previous studies. Therefore, we
can effectively use past features (through the forward state)
and future features (through the backward state). We use

Complexity 5

ht+1ht

xt

tanh

tanh

xt-1

ht-1

xt+1

ht-1

xt

f t
it ot

ht

ht CtCt-1

Unit Unit

×

× ×

+

C

Ｎ

Figure 2: The repeating unit in LSTM networks.

backpropagation through time (BPTT) [35] to train bi-LSTM
networks, which help to process multiple sentences at the
same time.

4.3. CRF Layer. A conditional Random Fields (CRF) is a
conditional probability distribution model whose nodes can
be divided exactly into two disjoint sets X and Y, which
are the observed and output variables, respectively. Under
CRF, the inference problem for CRF is essentially the same
as for a Markova Random Field (MRF) where an input
random variable X is given, and the output Y is observed.
The output variable Y represents a saccade target (fixation)
label sequence, and the input variable X represents the word
sequence that needs to be marked or labeled. The reading
saccade target prediction problem to be solved is transformed
into a sequence labeling problem in this paper. Under the
condition that the random variable X is x, the conditional
probability for the random variable Y to be valued as y is

𝑃 (𝑦 | 𝑥) = 1𝑍 (𝑥)
⋅ exp[∑

𝑖,𝑘

𝜆𝑘𝑡𝑘 (𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖) + ∑
𝑖,𝑙

𝜇𝑙𝑠𝑙 (𝑦𝑖, 𝑥, 𝑖)] (18)

In this expression, Z (x) is a scaling factor; tk is a transfer
feature function that depends on the current landing position
and the previous position. sl is a state feature function that
also depends on the current landing position. The value of
the feature function tk and sl is 1 or 0, which means when it
meets the feature condition, the value is 1; otherwise it is 0. 𝜆k
and 𝜇l are weights, which are obtained by training the model.
Parameter training is achieved based on a maximum likeli-
hood criterion and maximum a posteriori criterion, whose
goal is to maximize the probability of correctly marking the
target sequence in the training set.

Whether the current word (x) is a fixation word (yi)
depends not only on the feature value of the current word
(x), but also on whether the previous word is a fixation word
(yi−1). This coincides with the characteristics of the linear
chain CRF.

4.4. CNN-LSTM-CRFArchitecture. In the final stage, we built
our neural network model by feeding the output vector of
the bi-LSTM into the CRF layer. Figure 3 details our network
architecture.

5. Model Training

In this section, we provide detailed information on training
neural networks. We use the keras-contrib library [36] to
implement a neural network that contains useful extensions
to the official Keras package [37]. Model training is run on
the GeForce GTX 1070 graphical processing unit. It takes
approximately 20 min to complete the model training using
the setup discussed in this section.

5.1. Datasets. There are several eye-tracking corpora in exis-
tence. Among these, the Dundee corpus [38] is notable.
However, the Dundee corpus is not publicly available due
to licensing restrictions. Our experiments used data from
the Provo corpus [39], which is publicly accessible and
may be downloaded from the Open Science Framework at
https://osf.io/sjefs. The eye-tracking corpus has eye move-
ment data from 84 native English-speaking participants, all
of whom read the complete 55 texts for comprehension,
including online news articles, popular science magazine
articles, and public domain works of fiction. Eye movements
were documented using a SRResearch EyeLink 1000 Plus eye-
tracker with a spatial resolution of 0.01∘ and a sampling rate
of 1000 Hz (see [39] for details).

For the experiments reported here, the corpus was ran-
domly divided into three data sets in the following propor-
tions: 60% texts for training, 20% texts for development and
validation, and the last 20% texts for testing.

5.2. Features. Evidence from the psychological literature
indicates that the selection mechanism of fixation and sac-
cade is determined by the combination of low-level visual
cues (such as word length) and language cognitive factors
of the text [7, 40]. The linguistic factors known to influence
whether or not to skip words are word length, frequency,
and predictability; that is, shorter words in the text are easier
to skip than longer words. Predictability involves high-level
cognitive factors that are difficult to quantify. Thus, we use
parts of speech (POS) as a proxy to represent the high-
level cognitive factors. Words in the corpus are tagged for
parts of speech using the Constituent Likelihood Automatic
Word-Tagging System (CLAWS) [41]. Using the CLAWS tags,
words are divided into nine separate classes. The passages
contain a total of 682 nouns, 502 verbs, 364 determiners, 287
prepositions, 227 adjectives, 196 conjunctions, 169 adverbs,
109 pronouns, and 153 other words and symbols.

Ultimately, the features used by the neural network
consist of a tokenized word, word length (for low-level
visual features), and parts of speech (for high-level cognitive
features).

5.3. Training Procedure. The model used in this paper was
trained using general stochastic gradient descent (SGD),

6 Complexity

l1 l2 l 3 l 4

r1 r2 r3 r4

y1 y2 y3 y4

b1 b2 b3 b4

L-LSTM

R-LSTM

Time Distributed

CRF layer

Kate quivered and went

Fixation Fixation Skip Fixation

Max Pooling

Char Embedding

Convolution

Char Representation

Figure 3: The CNN-LSTM-CRF architecture for predicting fixation in reading. The first layer is the embedding layer, which vectorizes the
text corpus by converting each text into a sequence of integers. The second layer is the CNN layer, which extracts word form information
from characters in a word and encoding it into a neural representation. The third layer is the bidirectional LSTM neural network, which can
effectively use past (left) and future (right) contexts. The fourth layer is the CRF layer, which is used for sentence-level sequence labeling.

(1) for epoch in epochs:
(2) for batch in batchs:
(3) (1) bi-LSTMmodel forward pass:
(4) forward pass for forward state LSTM
(5) forward pass for backward state LSTM
(6) (2) CRF layer forward and backward pass
(7) (3) bi-LSTMmodel backward pass:
(8) backward pass for forward state LSTM
(9) backward pass for backward state LSTM
(10) (4) update parameters

Algorithm 1: The model training procedure.

forward propagation, and backpropagation (BP) algorithms.
The training procedure is shown in Algorithm 1.

For each training sample, the algorithm first initialized
random weights and threshold parameters, then provided
relevant input examples to the input layer neurons, and
forwarded the signals layer by layer (input layer -> hidden
layer -> output layer) until the output layer produced an
output value. Then, the error of the output were calculated
according to the output value, and then the error was
reversely propagated to the neurons of the hidden layer, and
finally the weight of the connection and the threshold of
the neuron were adjusted according to the error calculated
by the hidden layer neurons. The BP algorithm continually

iteratively looped through the above steps until the conditions
of stopping training were reached.

5.4. Tuning Hyperparameters. The hyperparameters that
need to be determined include (1) word embeddings dimen-
sion, (2) word embeddings length, (3) convolution kernel
size, (4)maxpool size, (5) neuron activation function type, (6)
cost function, (7) weight initialization method, (8) number
of neurons in each hidden layer, (9) optimizer, (10) learning
rate, (11) learning epoch, and (12) batch size. Among these
hyperparameters, (1) and (2) were determined by the size of
the development set, (6), (7), and (8) were determined by
some common strategies, and (3), (4), (5), (9), (10), (11), and
(12) were determined by random search.

Since there were 1200 different words in the development
set, and each sentence contained less than 60 words, we
set the word embeddings dimension to 1200 and the word
embeddings length to 60. In the one-dimensional convolu-
tion operation, it was equivalent to the feature extraction
of n gram using neural network, so the optional parameters
were 2, 3, and 4.

To find the optima values for hyperparameters, we used
the following strategies: first, we determined the type of
activation function, and then determined the type of cost
function and the method of weight initialization. Secondly,
according to the network topology, the number of neurons
in each hidden layer in the neural network was determined.
Then, for the remaining hyperparameters, a possible value

Complexity 7

Table 1: Hyperparameter settings.

Layer Hyper-parameter Value Parameter Range

Embedding
output dim 32 /
input dim 1200 /
input length 60 /

CNN
kernel size 3 [2, 3, 4]

maxpool size 3 [2, 3, 4]
stride size 1 /

L-LSTM units 32 /
R-LSTM units 32 /
Time
Distributed units 50 /

Global

activation ReLU [Sigmoid, Tanh, ReLU]
cost cross entropy /

kernel initializer random normal /
optimizer SGD [SGD, AdaDelta, Adam, RMSProp]

learning rate 2.5 [0.025, 0.25, 2.5]
learning epoch 100 [50, 100, 150, 200]

batch size 16 [8, 16, 32]
validation split 0.2 /

was randomly given first. In the cost function, the existence
of the regular term was not considered first, and the learning
rate was adjusted to obtain a suitable threshold. Half of
the threshold was taken as the initial value in the process
of adjusting the learning rate. The size of the batch was
determined through experiments. Then we used the deter-
mined learning rate to carefully adjust the learning rate and
the validation data to select good regularization parameters.
After the regularization parameters were determined, we
went back and reoptimize the learning rate. The number of
epochs was determined by a whole observation through the
above experiments.

Among all the parameters, the type of neuron activation
function should be selected first. The Sigmoid, Tanh, and
ReLU functions are the most commonly used activation
functions [42], but the Sigmoid and Tanh functions will
encounter the problem of gradient disappearance, which is
not conducive to the extension of the neural network to a
deeper structure. The ReLU overcomes this problem because
it solves the problem of gradient disappearance and therefore
allows the neural network to extend to deeper layers. So we
chose the ReLU as the activation function here.

Since our task was a classification task, the cost function
that should be used in the experiment was the cross-entropy.
For an input layer with nin neurons, the initializationweight is
a Gaussian random distribution with a mean of 0 and a stan-
dard deviation of 1/√𝑛𝑖𝑛. We determined the optimizer by
random search. The super-parameters to be tuned included
SGD [42], AdaDelta [43], Adam [44], and RMSProp [45].

The adjustment steps of the learning rate were as follows:
first, we choose the estimation that the cost on the training
data immediately began to decrease rather than oscillate
or increase as the learning rate threshold, and it was not

necessary to be too precise to determine themagnitude. If the
cost began to decline in the first few rounds of training, we
gradually increased the magnitude of the learning rate. If the
cost function curve began to oscillate or increase, we tried to
reduce themagnitude until the cost fell at the beginning of the
round. Taking half of the threshold determined the learning
rate.

Table 1 summarizes the relevant hyperparameters used
in the experiments determined by the development set, the
common strategies, and the random search method. The last
column in the table is the parameter range of the random
search. In order to avoid the overfitting problem, we used a
simple dropout strategy [46] to drop 10% of the redundant
nodes.

6. Experimental Verification

6.1. Evaluation Metrics and Baselines. We followed the eval-
uation metrics and baselines in NN09 [12] and HMKA12
[17]. First, we quantified the number of words in the test
set and used the fixation word rate for each subject as a
baseline (see Table 2). Then, the accuracy of the fixation
word prediction was used as an evaluation metrics, and the
fixation/skip distribution of each word in the verification set
was predicted. The accuracy of each predicted distribution
was calculated from the distribution in the fixation data.
Finally, the accuracy of each word in the validation set was
averaged.

6.2. Result Analysis. Based on the analysis in Section 5.2, we
set up features to predict the fixation points. The examined
features can be classified into two types: low-level visual
features and high-level cognitive features. In the experiments,

8 Complexity

Table 2: Baseline rates for fixated words in the test data.

Subjects Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10
fixated words 1,907 2,158 2,120 1,788 1,666 2,040 1,856 1,989 1,537 2,046
Rate[%] 69.52 78.67 77.29 65.18 60.74 74.37 67.66 72.51 56.03 74.59
words in test data 2,743(100%)

Table 3: Mean accuracy and standard deviation (averaged over 100 runs) for the fixation prediction task.

Subjects Baseline[%] POS[%] WL[%] POS&WL[%]
Mean Δ std Mean Δ std Mean Δ std

Sub1 69.52 70.34 1.05 78.36 1.95 79.87 1.50
Sub2 78.67 78.91 1.10 81.39 1.53 83.87 1.80
Sub3 77.29 79.66 1.18 80.83 1.84 82.77 1.58
Sub4 65.18 68.85 1.82 76.65 2.03 78.52 2.04
Sub5 60.74 63.42 1.27 71.31 1.54 74.71 1.35
Sub6 74.37 75.21 1.12 77.63 1.50 79.29 1.05
Sub7 67.66 69.48 1.05 72.58 1.34 75.69 2.13
Sub8 72.51 73.75 1.85 76.67 2.09 78.47 1.76
Sub9 56.03 61.91 1.27 70.76 1.58 73.92 1.16
Sub10 74.59 75.79 0.96 79.09 1.40 79.91 1.72
Average 69.66 71.73 1.27 76.53 1.68 78.70 1.61

we explored the contribution of low-level visual and high-
level cognitive features individually and in combinations to
prediction accuracy.

Based on the experimental settings discussed in Section 5,
we run at least 100 times with different random initialization
of parameters. All experiments were trained using Stochastic
Gradient Descent (SGD). We reported the mean accuracy
and the standard deviation (Δ std) and thus more fully
characterize the distribution of accuracies in the predictions.

The experimental results in Table 3 show that the word
length feature (for low-level visual features, denoted by
“WL”) has an accuracy of 76.53%, while the part of speech
feature (for high-level cognitive features, denoted by “POS”)
provides less accuracy.

The achieved test performances can be plotted in a
violin plot as shown in Figure 4. The violin plot is similar
to a boxplot; however, it estimates from the samples the
probability density function and depicts it along the Y-axis. If
a violin plot is wide at a certain location, then achieving this
test performance is especially likely. Besides the probability
density it also shows the median as well as the quartiles. In
Figure 4 we can observe that theWL feature usually results in
a higher performance than the POS feature for the fixation
prediction task. Hence, we can conclude that the low-level
visual feature is a better option for this task.

We also considered combinations of the two feature types.
From the Figure 5, we can see that adding other features to the
WL feature barely contributes to an improvement in accuracy.
Additionally, the influence of the POS feature on improving
the accuracy is not obvious.Theprediction accuracy obtained
by the POS feature is similar to the baseline accuracy. These
observations seem to imply that high-level cognitive features
do not capture very much extra information when using the

features separately.Thiswould suggest that combined features
work well only in conjunction with low-level visual features.

In summary, we can draw the conclusion that the low-
level visual cues have a key impact on the selection of saccade
targets compared with the high-level cognitive factors.

The authors in [12, 17] used the Dundee corpus to train
and test their models. Owing to licensing restrictions, our
experiments are based on the data from the Provo corpus.
Because of the different experimental settings, we cannot
simply compare our experimental results with those from
[12, 17]. However, considering that we were able to obtain
similar accuracy as those using NN09 [12] or HMKA12 [17],
and, moreover, we used far fewer features and required much
less preprocessing than did NN09 or HMKA12 (see Table 4),
these results indicate that the proposed RNN-based model
performs well in simulating reading eye movements.

6.3. Application Example. Interactive graphics environments
require high refresh rates, high resolutions, and low latencies,
each of which adds computational burden on the hardware.
To address the problems, the state-of-the-art technology that
integrates with eye tracking is known as foveated rendering
[47]. Foveated rendering can make the fixation point that
the user is focusing on clearer and replaces the adjacent area
with a blurred image, which is in line with the mode of
human vision. In this way, the machine does not have to
render the entire picture in detail, which can greatly reduce
the computational burden on the GPU. However, accurate
fixation tracking systems are still expensive and can only be
accessed by a limited number of researchers or companies
[48]. Another way to compute the fixation point is to use
an eye movement model that simulates the gaze behavior of
human.

Complexity 9

Table 4: Comparison between E-Z Reader, NN09, HMKA12, and RNN-based models.

Parameters E-Z Reader NN09 HMKA12 RNN-based Model
training sentences / 157.8 157.8 137.5
training features / 8 7 2
Average fixation accuracy 57.7% 69.5% 78.601% 78.702%

Table 5: Comparison between reference latency, HMKA12 latency, and RNN-based latency.

Count of pixels Reference Latency HMKA12 Latency RNN-based Latency
Single-GPU Multi-GPU Single-GPU Multi-GPU Single-GPU Multi-GPU

32M 780 ms 577 ms 96.2 ms 74.0 ms 27.6 ms 19.7 ms
16M 532 ms 410 ms 95.6 ms 65.4 ms 27.6 ms 19.8 ms
8M 385 ms 289 ms 95.0 ms 58.6 ms 27.4 ms 16.9 ms
4M 267 ms 212 ms 94.4 ms 62.2 ms 27.4 ms 17.4 ms
2M 98.6 ms 75.4 ms 93.8 ms 63.1 ms 27.1 ms 17.6 ms
1M 90.4 ms 72.1 ms 89.9 ms 63.7 ms 27.3 ms 18.3 ms

Sub1 Sub10Sub9Sub8Sub7Sub6Sub5Sub4Sub3Sub2
Subjects

60

65

70

75

80

85

Fi
xa

tio
n

ac
cu

ra
cy

 (%
)

POS
WL

Figure 4: Performance on the fixation prediction task for various
subjects using the POS feature or the WL feature.

The proposed model requires a smaller number of input
features than any of the alternatives, while the prediction
accuracy is similar to that of current machine learning mod-
els. Requiring fewer features and reducing the preprocessing
of data make the proposed model attractive in a range of
human-computer application areas. For example, the latency
can be reduced in an interactive graphics environment.

We constructed an application example using the archi-
tecture proposed in [49] to demonstrate that the proposed
model can improve system performance by reducing latency.
This was accomplished by a fixation-predicting architecture
with a parallel client and server process that accesses a
shared scene graph (Figure 6). Low latency and constant
delay are ideal features of an interactive system.We examined
the latency for single- and multi-GPU fixation-predicting
implementations as well as for a standalone regular renderer

Fi
xa

tio
n

ac
cu

ra
cy

 (%
)

85

80

70

75

65

60

50

55

Baseline
POS

WL
POS&WL

Sub1 Sub10Sub9Sub8Sub7Sub6Sub5Sub4Sub3Sub2
Subjects

Figure 5: Fixation prediction accuracy comparison using different
features on the validation data.

for reference with a method first documented by Steed
[50].

Table 5 lists the results obtained from the experiments
and the results show the average delay obtained in several
experiments.The reference render has amuch higher latency,
and the amount of delay depends on the number of pixels and
frame rate in the scene.When the number of pixels is reduced
to 4M or lower, the multi-GPU delay is slightly increased,
which is affected by frequent asynchronous data transmission
and context switching between threads, and a single GPU is
not affected by this. In the case of small scenes, it is best to
use direct rendering. However, when rendering is larger than
2M pixels, the fixation prediction method can significantly
reduce the delay, and the RNN-basedmodel has a lower delay.

6.4. Discussion. TheRNN-basedmodel achieves similar fixa-
tion prediction accuracy to current machine learning models

10 Complexity

Shared
Scene Graph

Shared Memory
Per-pixel DataRenderClient Server

Display
60Hz

Eeometry Etc.

60Hz

Transfer

Pose Matrices 60Hz

Input Devices
(Sensors)

Client Process Server Process

Figure 6: Overview of the gaze point rendering application architecture (adapted from [49]).

while requiring fewer features. We believe that there are two
reasons for this. On the one hand, it uses a convolution
operation and objectively increases the number of training
samples.On the other hand, patterns of fixations and saccades
are driven in part by low-level visual cues and high-level
linguistic and cognitive processing of the text. CRF can
account for the transfer features and state features of label
sequences, in line with how humans handle low-level visual
features. A RNN is a time-recursive neural network that
can process and foresee events following particularly large
intervals and delays in a time series, in correspondence
with human handling of high-level visual features. Placing
the RNN before the CRF is equal to utilizing the language
relationships extracted by the RNN to train the CRF. The
proposed model takes advantage of the context of the text
sequence and the label sequence, which is more in line with
the reality of the reading process.

7. Conclusions

In this paper, a new type of eye movement model was
developed and evaluated in terms of its ability to simulate eye
movements of human reading. Theoretical analysis demon-
strated that the RNN-based model always converges to a
global solution. In comparison with conventional eye move-
mentmodels, the new approachwas shown to achieve similar
accuracy in predicting a user’s fixation points during reading.
In addition, the proposed model has less reliance on data
features and requires less preprocessing than currentmachine
learning models, which makes the proposed model attractive
in a range of human-computer application areas. The verifi-
cation results further demonstrate the novelty and efficacy of
RNNs for simulating eye movements of human reading.

Data Availability

The eye-tracking corpus data used to support the findings of
this study are available from the Open Science Framework at
https://osf.io/sjefs.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grants nos. 61231016 and 61871326)
and the General Project of Humanities and Social Sciences
Research of Ministry of Education of China (Grant no.
18YJCZH180).

References

[1] G. Stockman and L. G. Shapiro, Computer Vision, Prentice Hall,
2001.

[2] X. J. Bai and G. L. Yan, Psychology of Reading, East China
Normal University Press, 2017.

[3] H. X. Meng, The Selection Mechanism of Saccade Target in
Chinese Reading, World Book Publishing Guangdong Co., Ltd.,
2016.

[4] X. L. Liu, Visual Neurophysiology, People’s Medical Publishing
House, 2011.

[5] K. Rayner, “Eye movements in reading and information pro-
cessing: 20 years of research,” Psychological Bulletin, vol. 124, no.
3, pp. 372–422, 1998.

[6] R. Radach and G. W. Mcconkie, “Determinants of fixation
positions in words during reading,” in Eye Guidance in Reading
and Scene Perception, G. Underwood, Ed., pp. 77–100, Elsevier,
1998.

[7] C. C. Jr, F. Ferreira, J. M. Henderson et al., “Eye movements
in reading and information processing: Keith Rayner’s 40 year
legacy,” Journal of Memory and Language, vol. 86, no. 1, pp. 1–19,
2016.

[8] S. G. Luke and K. Christianson, “Limits on lexical prediction
during reading,” Cognitive Psychology, vol. 88, no. 6, pp. 22–60,
2016.

[9] E. D. Reichle, “Computational models of reading: a primer,”
Language and Linguistics Compass, vol. 9, no. 7, pp. 271–284,
2015.

Complexity 11

[10] E. D. Reichle, K. Rayner, and A. Pollatsek, “The E-Z reader
model of eye-movement control in reading: comparisons to
other models,” Behavioral and Brain Sciences, vol. 26, no. 4, pp.
445–476, 2003.

[11] R. Engbert, A. Nuthmann, E. M. Richter et al., “SWIFT:
a dynamical model of saccade generation during reading,”
Psychological Review, vol. 112, no. 4, pp. 777–813, 2005.

[12] M. Nilsson and J. Nivre, “Learning where to look: modeling eye
movements in reading,” in Proceedings of the 13th Conference on
ComputationalNatural Language Learning (CoNLL), pp. 93–101,
Boulder, Colo, USA, 2009.

[13] N. Landwehr, S. Arzt, T. Scheffer, and R. Kliegl, “A model
of individual differences in gaze control during reading,” in
Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1810–1815, Doha, Qatar,
2014.

[14] M. Hahn and F. Keller, “Modeling human reading with neural
attention,” 2016, http://cn.arxiv.org/abs/1608.05604.

[15] M. Nilsson and J. Nivre, “Towards a data-driven model of eye
movement control in reading,” in Proceedings of the Workshop
onCognitiveModeling andComputational Linguistics, pp. 63–71,
Uppsala, Sweden, 2010.

[16] F. Matties and A. Søgaard, “With blinkers on: robust prediction
of eye movements across readers,” in Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 803–807, Seattle, Wash, USA, 2013.

[17] T. Hara, D. Mochihashi, Y. Kano et al., “Predicting word
fixations in text with a CRFmodel for capturing general reading
strategies among readers,” in Proceedings of the First Workshop
on Eye-tracking and Natural Language Processing, pp. 55–70,
Mumbai, India, 2012.

[18] U. R. Acharya, S. L. Oh, Y. Hagiwara et al., “Deep convolutional
neural network for the automated detection and diagnosis of
seizure using EEG signals,” Computers in Biology and Medicine,
vol. 100, pp. 270–278, 2018.

[19] J. Jiang, P. Trundle, and J. Ren, “Medical image analysis with
artificial neural networks,” Computerized Medical Imaging and
Graphics, vol. 34, no. 8, pp. 617–631, 2010.

[20] J. Ren, “ANN vs. SVM: which one performs better in classifi-
cation of MCCs in mammogram imaging,” Knowledge-Based
Systems, vol. 26, no. 2, pp. 144–153, 2012.

[21] J. Ren, D. Wang, and J. Jiang, “Effective recognition of MCCs in
mammograms using an improved neural classifier,” Engineering
Applications of Artificial Intelligence, vol. 24, no. 4, pp. 638–645,
2011.

[22] Y. Guo, G. Ding, and J. Han, “Robust quantization for general
similarity search,” IEEE Transactions on Image Processing, vol.
27, no. 2, pp. 949–963, 2018.

[23] H. Liu, L. Dai, S. Hou, J. Han, and H. Liu, “Are mid-air dynamic
gestures applicable to user identification?” Pattern Recognition
Letters, vol. 117, pp. 179–185, 2019.

[24] H. Liu, Z. Fu, J. Han, L. Shao, S. Hou, and Y. Chu, “Single image
super-resolution using multi-scale deep encoder-decoder with
phase congruency edge map guidance,” Information Sciences,
vol. 473, pp. 44–58, 2019.

[25] G. Wu, J. Han, Y. Guo et al., “Unsupervised deep video
hashing via balanced code for large-scale video retrieval,” IEEE
Transactions on Image Processing, vol. 28, no. 4, pp. 1993–2007,
2019.

[26] G. Wu, J. Han, Z. Lin, G. Ding, B. Zhang, and Q. Ni, “Joint
image-text hashing for fast large-scale cross-media retrieval

using self-supervised deep learning,” IEEE Transactions on
Industrial Electronics, 2018.

[27] S. Luan, C. Chen, B. Zhang, J. Han, and J. Liu, “Gabor convo-
lutional networks,” IEEE Transactions on Image Processing, vol.
27, no. 9, pp. 4357–4366, 2018.

[28] R. Collobert, J. Weston, L. Bottou et al., “Natural language
processing (almost) from scratch,” Journal of Machine Learning
Research, vol. 12, pp. 2493–2537, 2011.

[29] K. Liang,N.Qin,D.Huang, andY. Fu, “Convolutional recurrent
neural network for fault diagnosis of high-speed train bogie,”
Complexity, vol. 2018, Article ID 4501952, 13 pages, 2018.

[30] C. A. Mart́ın, J. M. Torres, R. M. Aguilar, and S. Diaz, “Using
deep learning to predict sentiments: case study in tourism,”
Complexity, vol. 2018, Article ID 7408431, 9 pages, 2018.

[31] S. S. Du, X. Zhai, B. Poczos et al., “Gradient descent prov-
ably optimizes over-parameterized neural networks,” 2018,
http://cn.arxiv.org/abs/1810.02054.

[32] C. D. Santos and B. Zadrozny, “Learning character-level repre-
sentations for part-of-speech tagging,” in Proceedings of the 31st
International Conference on Machine Learning, pp. 1818–1826,
Beijing, China, 2014.

[33] J. P. Chiu and E. Nichols, “Named entity recognition
with bidirectional LSTM-CNNs,” 2015, http://cn.arxiv.org/
abs/1511.08308.

[34] C. Dyer, M. Ballesteros,W. Ling, A. Matthews, and N. A. Smith,
“Transition-based dependency parsing with stack long short-
term memory,” 2015, http://cn.arxiv.org/abs/1505.08075.

[35] M. Boden, “A guide to recurrent neural networks and back
propagation,”The Dallas project, 2002.

[36] Keras-contrib library, 2018, https://github.com/keras-team/
keras-contrib.

[37] Keras python library, 2018, https://keras.io.
[38] A. Kennedy, R. Hill, and J. Pynte, “The Dundee corpus,” in

Proceedings of the 12th European Conference on Eye Movement,
Dundee, Scotland, 2003.

[39] S. G. Luke and K. Christianson, “The provo corpus: a large eye-
tracking corpus with predictability norms,” Behavior Research
Methods, vol. 50, no. 2, pp. 826–833, 2018.

[40] A. Kennedy, J. Pynte, W. S. Murray, and S.-A. Paul, “Fre-
quency and predictability effects in the dundee corpus: an
eye movement analysis,”The Quarterly Journal of Experimental
Psychology, vol. 66, no. 3, pp. 601–618, 2013.

[41] R. Garside and N. Smith, “A hybrid grammatical tagger:
CLAWS4,” in Corpus Annotation: Linguistic Information from
Computer Text Corpora, R. Garside, G. N. Leech, and T.
McEnery, Eds., pp. 102–121, Longman, London, UK, 1997.

[42] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” 2013, http://cn.arxiv.org/
abs/1211.5063v2.

[43] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,”
2012, http://cn.arxiv.org/abs/1212.5701.

[44] D. Kingma and J. Ba, “Adam: a method for stochastic optimiza-
tion,” 2014, https://arxiv.org/abs/1412.6980.

[45] Y. N. Dauphin, H. De Vries, and Y. Bengio, “Equilibrated
adaptive learning rates for non-convex optimization,” Advances
inNeural InformationProcessing Systems, vol. 35, no. 3, pp. 1504–
1512, 2015.

[46] N. Srivastava, G. Hinton, andA. Krizhevsky, “Dropout: a simple
way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

http://cn.arxiv.org/abs/1608.05604
http://cn.arxiv.org/abs/1810.02054
http://cn.arxiv.org/abs/1511.08308
http://cn.arxiv.org/abs/1511.08308
http://cn.arxiv.org/abs/1505.08075
https://github.com/keras-team/keras-contrib
https://github.com/keras-team/keras-contrib
https://keras.io
http://cn.arxiv.org/abs/1211.5063v2
http://cn.arxiv.org/abs/1211.5063v2
http://cn.arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980

12 Complexity

[47] M. Weier, T. Roth, A. Hinkenjann et al., “Predicting the
gaze depth in head-mounted displays using multiple feature
regression,” in Proceedings of the 10th ACM Symposium on Eye
Tracking Research and Applications (ETRA), pp. 1–9, Warsaw,
Poland, 2018.

[48] E. Arabadzhiyska, O. T. Tursun, K. Myszkowski et al., “Saccade
landing position prediction for gaze-contingent rendering,”
ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–12, 2017.

[49] F. Smit, R. van Liere, S. Beck et al., “A shared-scene-graph
image-warping architecture for VR: low latency versus image
quality,” Computers and Graphics, vol. 34, no. 1, pp. 3–16, 2010.

[50] A. Steed, “A simple method for estimating the latency of
interactive, real-time graphics simulations,” in Proceedings of
the VRST ACM Symposium on Virtual Reality Software and
Technology, pp. 123–129, Bordeaux, France, 2008.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

	coversheet_template
	8641074.pdf

