2,313 research outputs found

    Switching and Rectification of a Single Light-sensitive Diarylethene Molecule Sandwiched between Graphene Nanoribbons

    Full text link
    The 'open' and 'closed' isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the 'closed' diarylethene isomer with the rectification ratio >10^3 is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital (LUMO) of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.Comment: The Journal of Chemical Physics 135 (2011

    Dielectric properties and lattice dynamics of alpha-PbO2-type TiO2: The role of soft phonon modes in pressure-induced phase transition to baddeleyite-type TiO2

    Full text link
    Dielectric tensor and lattice dynamics of alpha-PbO2-type TiO2 have been investigated using the density functional perturbation theory, with a focus on responses of the vibrational frequencies to pressure. The calculated Raman spectra under different pressures are in good agreement with available experimental results and the symmetry assignments of the Raman peaks of alpha-PbO2-type TiO2 are given for the first time. In addition, we identified two anomalously IR-active soft phonon modes, B1u and B3u, respectively, around 200 cm-1 which have not been observed in high pressure experiments. Comparison of the phonon dispersions at 0 and 10 GPa reveals that softening of phonon modes also occurs for the zone-boundary modes. The B1u and B3u modes play an important role in transformation from the alpha-PbO2-type phase to baddeleyite phase. The significant relaxations of the oxygen atoms from the Ti4 plane in the Ti2O2Ti2 complex of the baddeleyite phase are directly correlated to the oxygen displacements along the directions given by the eigenvectors of the soft B1u and B3u modes in the alpha-PbO2-type phase.Comment: 8 pages, 9 figure

    Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field

    Full text link
    Chirality is one of the most fundamental properties of many physical, chemical and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the BZ reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.Comment: 21 pages with 9 figures; update references; to appear in J. Chem. Phy

    Phase-locked scroll waves defy turbulence induced by negative filament tension

    Get PDF
    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scrollwaves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scrollwaves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations

    b \to ss\bar{d}$ in a Vector Quark Model

    Full text link
    The rare decay bssdˉb\to ss\bar{d} is studied in a vector quark model by adding the contributions from exotic vector-like quarks. We find that the contribution from box diagrams amounts to 10910^{-9} in the branching ratio, while the ZZ-mediated tree level contribution is negligible.Comment: LaTeX, 9 pages with 1 figur

    Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images

    Full text link
    Rendering high-resolution (HR) graphics brings substantial computational costs. Efficient graphics super-resolution (SR) methods may achieve HR rendering with small computing resources and have attracted extensive research interests in industry and research communities. We present a new method for real-time SR for computer graphics, namely Super-Resolution by Predicting Offsets (SRPO). Our algorithm divides the image into two parts for processing, i.e., sharp edges and flatter areas. For edges, different from the previous SR methods that take the anti-aliased images as inputs, our proposed SRPO takes advantage of the characteristics of rasterized images to conduct SR on the rasterized images. To complement the residual between HR and low-resolution (LR) rasterized images, we train an ultra-efficient network to predict the offset maps to move the appropriate surrounding pixels to the new positions. For flat areas, we found simple interpolation methods can already generate reasonable output. We finally use a guided fusion operation to integrate the sharp edges generated by the network and flat areas by the interpolation method to get the final SR image. The proposed network only contains 8,434 parameters and can be accelerated by network quantization. Extensive experiments show that the proposed SRPO can achieve superior visual effects at a smaller computational cost than the existing state-of-the-art methods.Comment: This article has been accepted by ECCV202
    corecore