8 research outputs found

    Anti-angiogenic pathway associations of the 3p21.3 mapped BLU gene in nasopharyngeal carcinoma

    No full text
    Zinc-finger, MYND-type containing 10 (ZMYND10), or more commonly called BLU, expression is frequently downregulated in nasopharyngeal carcinoma (NPC) and many other tumors due to promoter hypermethylation. Functional evidence shows that the BLU gene inhibits tumor growth in animal assays, but the detailed molecular mechanism responsible for this is still not well understood. In current studies, we find that 93.5% of early-stage primary NPC tumors show downregulated BLU expression. Using a PCR array, overexpression of the BLU gene was correlated to the angiogenesis network in NPC cells. Moreover, expression changes of the MMP family, VEGF and TSP1, were often detected in different stages of NPC, suggesting the possibility that BLU may be directly involved in the microenvironment and anti-angiogenic activity in NPC development. Compared with vector-alone control cells, BLU stable transfectants, derived from poorly-differentiated NPC HONE1 cells, suppress VEGF165, VEGF189 and TSP1 expression at both the RNA and protein levels, and significantly reduce the secreted VEGF protein in these cells, reflecting an unknown regulatory mechanism mediated by the BLU gene in NPC. Cells expressing BLU inhibited cellular invasion, migration and tube formation. These in vitro results were further confirmed by in vivo tumor suppression. and a matrigel plug angiogenesis assay in nude mice. Tube-forming ability was clearly inhibited, when the BLU gene is expressed in these cells. Up to 70-90% of injected tumor cells expressing increased exogenous BLU underwent cell death in animal assays. Overexpressed BLU only inhibited VEGF165 expression in differentiated squamous NPC HK1 cells, but also showed an anti-angiogenic effect in the animal assay, revealing a complicated mechanism regulating angiogenesis and the microenvironment in different NPC cell lines. Results of these studies indicate that alteration of BLU gene expression influences anti-angiogenesis pathways and is important for the development of NPClink_to_OA_fulltex

    Subcellular localization of micrornas by microrna in situ hybridization (miR-ISH)

    No full text
    MicroRNAs (miRNAs) are 22-nucleotide RNA sequences that regulate up to 60% of the mammalian transcriptome. Although canonical miRNA-induced silencing complex-mediated messenger RNA degradation occurs in the cytoplasm, miRNAs have been described in other subcellular compartments with potentially novel functions. Currently, there are limited methodologies for visualizing RNA locations within cells to elucidate mechanisms and pathways of miRNA biogenesis, transport, and function. Here, we describe a simple and rapid miRNA in situ hybridization method that can be combined with standard immunofluorescence procedures for subcellular localization of mature and precursor miRNAs

    High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader

    Get PDF
    Routine antimicrobial susceptibility testing (AST) can prevent deaths due to bacteria and reduce the spread of multi-drug-resistance, but cannot be regularly performed in resource-limited-settings due to technological challenges, high-costs, and lack of trained professionals. We demonstrate an automated and cost-effective cellphone-based 96-well microtiter-plate (MTP) reader, capable of performing AST without the need for trained diagnosticians. Our system includes a 3D-printed smartphone attachment that holds and illuminates the MTP using a light-emitting-diode array. An inexpensive optical fiber-array enables the capture of the transmitted light of each well through the smartphone camera. A custom-designed application sends the captured image to a server to automatically determine well-turbidity, with results returned to the smartphone in ~1 minute. We tested this mobile-reader using MTPs prepared with 17 antibiotics targeting Gram-negative bacteria on clinical isolates of Klebsiella pneumoniae, containing highly-resistant antimicrobial profiles. Using 78 patient isolate test-plates, we demonstrated that our mobile-reader meets the FDA-defined AST criteria, with a well-turbidity detection accuracy of 98.21%, minimum-inhibitory-concentration accuracy of 95.12%, and a drug-susceptibility interpretation accuracy of 99.23%, with no very major errors. This mobile-reader could eliminate the need for trained diagnosticians to perform AST, reduce the cost-barrier for routine testing, and assist in spatio-temporal tracking of bacterial resistance
    corecore