4,947 research outputs found

    Nuclear modification of valence-quark distributions and its effects on NuTeV sin^2 theta_W anomaly

    Full text link
    We investigated a nuclear modification difference between up- and down-valence quark distributions by analyzing structure function F_2 and Drell-Yan cross-section ratios. Although nuclear modifications of the valence-quark distributions themselves are rather well determined, it is difficult to find their difference from the present data. We estimated such an effect on the NuTeV sin^2 theta_W value and its uncertainty by the Hessian method. At this stage, it is not large enough to explain the whole NuTeV anomaly. However, the modification difference cannot be precisely determined, so that further studies are needed.Comment: 3 pages, LaTeX, 1 eps file, to be published in Proceedings of the 6th International Workshop on Neutrino Factories and Superbeams (NuFact04

    Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?

    Full text link
    The weak mixing angle result from NuTeV falls three standard deviations above the value determined by global electroweak fits. It has been suggested that one possible explanation for this result could be the oscillation of electron neutrinos in the NuTeV beam to sterile neutrinos. This article examines several cases of masses and mixings for 3+2 neutrino oscillation models which fit the current oscillation data at 99% CL. We conclude that electron to sterile neutrino oscillations can account for only up to a third of a standard deviation between the NuTeV determination of the weak mixing angle and the standard model.Comment: 3 pages, 2 figures, submitted to Brief Report

    Modified Paschos-Wolfenstein relation and extraction of weak mixing angle sin^2 theta_W

    Full text link
    The NuTeV collaboration reported anomalously large weak mixing angle sin^2 theta_W in comparison with the standard model prediction. Neutrino and antineutrino charged- and neutral-current events are analyzed for extracting sin^2 theta_W. Although the Paschos-Wolfenstein relation is not directly used in the analysis, it plays an important role in the determination. Noting that the target nucleus, iron, is not an isoscalar nucleus, we derive a leading-order expression for a modified Paschos-Wolfenstein relation for nuclei, which may have neutron excess. Then, using charge and baryon-number conservations for nuclei, we discuss a nuclear correction in the sin^2 theta_W determination. It is noteworthy that nuclear modifications are different between valence up- and down-quark distributions. We show this difference effect on the NuTeV sin^2 theta_W deviation.Comment: 5 pages, REVTeX4.0, revtex4.cls, url.sty, natbib.sty, revsymb.sty, 10pt.rtx, aps.rtx, amssymb.sty, amsfonts.sty, 3 eps figures. Phys. Rev. D in press. Email: [email protected] See also http://hs.phys.saga-u.ac.j

    Ionization signals from electrons and alpha-particles in mixtures of liquid Argon and Nitrogen - perspectives on protons for Gamma Resonant Nuclear Absorption applications

    Full text link
    In this paper we report on a detailed study of ionization signals produced by Compton electrons and alpha-particles in a Time Projection Chamber (TPC) flled with different mixtures of liquid Argon and Nitrogen. The measurements were carried out with Nitrogen concentrations up to 15% and a drift electric feld in the range 0-50 kV/cm. A prediction for proton ionization signals is made by means of interpolation. This study has been conducted in view of the possible use of liquid Ar-N2 TPCs for the detection of gamma-rays in the resonant band of the Nitrogen absorption spectrum, a promising technology for security and medical applications

    30 kV coaxial vacuum-tight feedthrough for operation at cryogenic temperatures

    Full text link
    In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon

    Single Pion production from Nuclei

    Full text link
    We have studied charged current one pion production induced by νμ(νˉμ)\nu_\mu(\bar\nu_\mu) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the Δ\Delta dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of Δ\Delta properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1π\pi production, and also with some of the older experiments in Freon and Freon-Propane from CERN.Comment: 5 pages, 5 figures, 5th International Workshop on Neutrino-Nucleus Interactions in the few GeV region(NuInt07), Batavia, Illinois, 30May-3June, 200

    A First-Principles Study of Zinc Oxide Honeycomb Structures

    Get PDF
    We present a first-principles study of the atomic, electronic, and magnetic properties of two-dimensional (2D), single and bilayer ZnO in honeycomb structure and its armchair and zigzag nanoribbons. In order to reveal the dimensionality effects, our study includes also bulk ZnO in wurtzite, zincblende, and hexagonal structures. The stability of 2D ZnO, its nanoribbons and flakes are analyzed by phonon frequency, as well as by finite temperature ab initio molecular-dynamics calculations. 2D ZnO in honeycomb structure and its armchair nanoribbons are nonmagnetic semiconductors but acquire net magnetic moment upon the creation of zinc-vacancy defect. Zigzag ZnO nanoribbons are ferromagnetic metals with spins localized at the oxygen atoms at the edges and have high spin polarization at the Fermi level. However, they change to nonmagnetic metal upon termination of their edges with hydrogen atoms. From the phonon calculations, the fourth acoustical mode specified as twisting mode is also revealed for armchair nanoribbon. Under tensile stress the nanoribbons are deformed elastically maintaining honeycomblike structure but yield at high strains. Beyond yielding point honeycomblike structure undergo a structural change and deform plastically by forming large polygons. The variation in the electronic and magnetic properties of these nanoribbons have been examined under strain. It appears that plastically deformed nanoribbons may offer a new class of materials with diverse properties.Comment: http://prb.aps.org/abstract/PRB/v80/i23/e23511

    Measurement of the drift field in the ARGONTUBE LAr TPC with 266~nm pulsed laser beams

    Get PDF
    ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings

    Experimental study of electric breakdowns in liquid argon at centimeter scale

    Full text link
    In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC)
    corecore