6 research outputs found

    Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    No full text
    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT(2A/2C), 5-HT(3), dopamine D(1)-like, D(2), D(3) or D(2/3) antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D(2/3) receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D(3) receptor antagonist SB277011A or D(2) receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D(2) and/or D(3) receptors robustly reduces ABA. Studies investigating the mechanisms by which D(2) and/or D(3) receptors regulate ABA, and the efficacy for D(2/3) and/or D(3) antagonists to treat AN, are warranted

    Central Neuropeptide Y Modulates Binge-Like Ethanol Drinking in C57BL/6J Mice via Y1 and Y2 Receptors

    No full text
    Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence

    Advanced Transgenic Approaches to Understand Alcohol-Related Phenotypes in Animals

    No full text
    corecore