5 research outputs found
Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Biology 159 (2012): 1833-1841, doi:10.1007/s00227-012-1973-y.The mesopelagic zone of the Red Sea represents
an extreme environment due to low food concentrations,
high temperatures and low oxygen waters. Nevertheless, a
38 kHz echosounder identified at least four distinct scattering
layers during the daytime, of which the 2 deepest
layers resided entirely within the mesopelagic zone. Two of
the acoustic layers were found above a mesopelagic oxygen
minimum zone (OMZ), one layer overlapped with the
OMZ, and one layer was found below the OMZ. Almost all
organisms in the deep layers migrated to the near-surface
waters during the night. Backscatter from a 300 kHz lowered
Acoustic Doppler Current Profiler indicated a layer of
zooplankton within the OMZ. They carried out DVM, yet a
portion remained at mesopelagic depths during the night.
Our acoustic measurements showed that the bulk of the
acoustic backscatter was restricted to waters shallower than
800 m, suggesting that most of the biomass in the Red Sea
resides above this depth.This research is based in part on work
supported by Award Nos. USA 00002, KSA 00011 and KSA 00011/02
made by KAUST to the Woods Hole Oceanographic Institution
Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea
Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted by MGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea
