8 research outputs found

    Synthesis and electrochemical characterization of Si/TiO2/Au composite anode: Efficient oxygen evolution and hydroxyl radicals generation

    Get PDF
    This paper describes the photoelectrochemical properties of a novel composite anode composed of a 200 nm Au-Sb ohmic contact/300 ÎŒm n-Si wafer/20 nm TiO2 /120 nm Au grid. By connecting the Au ohmic contact to the gold grid via a power supply, holes thermally or photochemically generated in the Si are launched to the TiO2 surface where they are converted to ‱OH radicals. We show that the Si/TiO2/Au composite anode can be efficiently employed in the oxygen evolution reaction and prove that the anode generates hydroxyl radicals (using p-nitrosodimethylaniline as a probe). Potential applications include the photoelectrocatalytic oxidation of organic contaminants, water splitting, and organic electro-synthesis

    Using Room Temperature Ionic Liquids as Solvents to Probe Structural Effects in Electro-Reduction Processes. Electrochemical Behavior of Mutagenic Disperse Nitroazo Dyes in Room Temperature Ionic Liquids

    No full text
    The electrochemical reduction of the disperse azo dyes Red1, Red13 and Orange1 (Or1) was investigated in the RTILs [C4mim][NTf2] and [C4mpyrr][NTf2], and in contrast with their behavior in conventional aprotic solvents, was shown to proceed via a reversible one electron step to form stable radical anion, which is further reduced at more negative potentials to the dianion. In [C4mpyrr][NTf2], cleavage of the N-H bond on the secondary amine was inferred for Orange1, and the ease at which this cleavage occurred is rationalized in terms of acidity of the amine moiety. The ease of reduction was observed to decrease in the order Or1 > Red13 > Red1, and is related to the electron delocalization within the molecule and the electron withdrawing power of the substituents. The dyes were then oxidized, and Red1 and Red13, bearing an aliphatic amine, were oxidized in a reversible one electron step, to generate the radical cations. The presence of a primary aromatic amine in Or1 provokes a positive shift in the potential of the oxidation peak and shows reversible voltammetry only at scan rates above 200 mV s-1. The ease of oxidation decreases in the order Red1 > Red13 > Or1, and is thought to relate to the detected mutagenic activity of the dyes. © 2009 by ESG

    The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    No full text
    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N(6,2,2,2)][N(Tf)(2)], 1-butyl-3-methylimidazolium hexafluorosphosphate [C(4)mim][PF(6)], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C(4)mpyrr][N(Tf)(2)], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(4)mim][N(Tf)(2)], N-butyl-N-methyl-pyrrolidinium dicyanamide [C(4)mpyrr][N(NC)(2)] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P(14,6,6,6)][FAP] on a platinum microelectrode. In [N(6,2,2,2)][NTf(2)] and [P(14,6,6,6)][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P(14,6,6,6)][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N(6,2,2,2)][NTf(2)] and [P(14,6,6,6)][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction
    corecore