112 research outputs found

    Copper signaling axis as a target for prostate cancer therapeutics.

    Get PDF
    Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies

    Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study

    Get PDF
    In a previous study we applied a three-step avidin–biotin pretargeting approach to target 90Y-biotin to the tumour in patients with recurrent high grade glioma. The encouraging results obtained in this phase I–II study prompted us to apply the same approach in an adjuvant setting, to evaluate (i) time to relapse and (ii) overall survival. We enrolled 37 high grade glioma patients, 17 with grade III glioma and 20 with glioblastoma, in a controlled open non-randomized study. All patients received surgery and radiotherapy and were disease-free by neuroradiological examinations. Nineteen patients (treated) received adjuvant treatment with radioimmunotherapy. In the treated glioblastoma patients, median disease-free interval was 28 months (range=9–59); median survival was 33.5 months and one patient is still without evidence of disease. All 12 control glioblastoma patients died after a median survival from diagnosis of 8 months. In the treated grade III glioma patients median disease-free interval was 56 months (range=15–60) and survival cannot be calculated as only two, within this group, died. Three-step radioimmunotherapy promises to have an important role as adjuvant treatment in high grade gliomas, particularly in glioblastoma where it impedes progression, prolonging time to relapse and overall survival. A further randomized trial is justified

    Therapeutic Radionuclides: Making the Right Choice

    Full text link
    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article

    Advances in tenascin-C biology

    Get PDF
    Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology

    Targeted radiotherapy of brain tumours.

    No full text
    The utility of external beam radiotherapy for the treatment of malignant brain tumours is compromised by the need to avoid excessive radiation damage to normal CNS tissues. This review describes the current status of targeted radiotherapy, an alternative strategy for brain tumour treatment that offers the exciting prospect of increasing the specificity of tumour cell irradiation
    corecore