7 research outputs found

    GLI1 Confers Profound Phenotypic Changes upon LNCaP Prostate Cancer Cells That Include the Acquisition of a Hormone Independent State

    Get PDF
    The GLI (GLI1/GLI2) transcription factors have been implicated in the development and progression of prostate cancer although our understanding of how they actually contribute to the biology of these common tumours is limited. We observed that GLI reporter activity was higher in normal (PNT-2) and tumourigenic (DU145 and PC-3) androgen-independent cells compared to androgen-dependent LNCaP prostate cancer cells and, accordingly, GLI mRNA levels were also elevated. Ectopic expression of GLI1 or the constitutively active ΔNGLI2 mutant induced a distinct cobblestone-like morphology in LNCaP cells that, regarding the former, correlated with increased GLI2 as well as expression of the basal/stem-like markers CD44, β1-integrin, ΔNp63 and BMI1, and decreased expression of the luminal marker AR (androgen receptor). LNCaP-GLI1 cells were viable in the presence of the AR inhibitor bicalutamide and gene expression profiling revealed that the transcriptome of LNCaP-GLI1 cells was significantly closer to DU145 and PC-3 cells than to control LNCaP-pBP (empty vector) cells, as well as identifying LCN2/NGAL as a highly induced transcript which is associated with hormone independence in breast and prostate cancer. Functionally, LNCaP-GLI1 cells displayed greater clonal growth and were more invasive than control cells but they did not form colonies in soft agar or prostaspheres in suspension suggesting that they do not possess inherent stem cell properties. Moreover, targeted suppression of GLI1 or GLI2 with siRNA did not reverse the transformed phenotype of LNCaP-GLI1 cells nor did double GLI1/GLI2 knockdowns activate AR expression in DU145 or PC-3 cells. As such, early targeting of the GLI oncoproteins may hinder progression to a hormone independent state but a more detailed understanding of the mechanisms that maintain this phenotype is required to determine if their inhibition will enhance the efficacy of anti-hormonal therapy through the induction of a luminal phenotype and increased dependency upon AR function

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore