28 research outputs found

    Discovery of a Novel Activator of KCNQ1-KCNE1 K+ Channel Complexes

    Get PDF
    KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes

    Targeted Deletion of Kcne2 Causes Gastritis Cystica Profunda and Gastric Neoplasia

    Get PDF
    Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 α subunit and the KCNE2 β subunit provide a K+ efflux current to facilitate gastric acid secretion by the apical H+K+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2−/− mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2−/−mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    Kcne2 deletion causes early-onset nonalcoholic fatty liver disease via iron deficiency anemia

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is an increasing health problem worldwide, with genetic, epigenetic, and environmental components. Here, we describe the first example of NAFLD caused by genetic disruption of a mammalian potassium channel subunit. Mice with germline deletion of the KCNE2 potassium channel β subunit exhibited NAFLD as early as postnatal day 7. Using mouse genetics, histology, liver damage assays and transcriptomics we discovered that iron deficiency arising from KCNE2-dependent achlorhydria is a major factor in early-onset NAFLD in Kcne2(─/─) mice, while two other KCNE2-dependent defects did not initiate NAFLD. The findings uncover a novel genetic basis for NAFLD and an unexpected potential factor in human KCNE2-associated cardiovascular pathologies, including atherosclerosis

    Auto-phosphorylation of a voltage-gated K+ channel controls non-associative learning

    No full text
    Here, we characterize a new K+ channel–kinase complex that operates in the metazoan Caenorhabditis elegans to control learning behaviour. This channel is composed of a pore-forming subunit, dubbed KHT-1 (73% homology to human Kv3.1), and the accessory subunit MPS-1, which shows kinase activity. Genetic, biochemical and electrophysiological evidence show that KHT-1 and MPS-1 form a complex in vitro and in native mechanosensory PLM neurons, and that KHT-1 is a substrate for the kinase activity of MPS-1. Behavioural analysis further shows that the kinase activity of MPS-1 is specifically required for habituation to repetitive mechanical stimulation. Thus, worms bearing an inactive MPS-1 variant (D178N) respond normally to touch on the body but do not habituate to repetitive mechanical stimulation such as tapping on the side of the Petri dish. Hence, the phosphorylation status of KHT-1–MPS-1 seems to be linked to distinct behavioural responses. In the non-phosphorylated state the channel is necessary for the normal function of the touch neurons. In the auto-phosphorylated state the channel acts to induce neuronal adaptation to mechanical stimulation. Taken together, these data establish a new mechanism of dynamic regulation of electrical signalling in the nervous system
    corecore