55 research outputs found

    The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting a unique, long-duration mission of fundamental physics research in space. The physics objectives include the precise studies of the origin of dark matter, antimatter, and cosmic rays as well as the exploration of new phenomena. Following a 16-year period of construction and testing, and a precursor flight on the Space Shuttle, AMS was installed on the ISS on May 19, 2011. In this report we present results based on 120 billion charged cosmic ray events up to multi-TeV energies. This includes the fluxes of positrons, electrons, antiprotons, protons, and nuclei. These results provide unexpected information, which cannot be explained by the current theoretical models. The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, provide unique input to the understanding of origins, acceleration, and propagation of cosmic rays.</p

    Enhancing the prediction of transcription factor binding sites by incorporating structural properties and nucleotide covariations

    No full text
    A problem faced by many algorithms for finding transcription factor (TF) binding sites is the high number of false positive hits that result with the increased sensitivity of their prediction. A main contributing factor to this is the short and degenerate nature of these sites which results in a low signal-to-noise ratio. In order to counter this problem, one needs to look beyond the assumption that individual bases of a TF binding site act independently from each other when binding to a transcription factor. In this paper, we present a new method based on templates, designed to exploit the discriminatory features, nucleotide polymorphism, and structural homology present in TF binding sites for distinguishing them from nonbinding sites

    Enhancing the prediction of transcription factor binding sites by incorporating structural properties and nucleotide covariations

    No full text
    A problem faced by many algorithms for finding transcription factor (TF) binding sites is the high number of false positive hits that result with the increased sensitivity of their prediction. A main contributing factor to this is the short and degenerate nature of these sites which results in a low signal-to-noise ratio. In order to counter this problem, one needs to look beyond the assumption that individual bases of a TF binding site act independently from each other when binding to a transcription factor. In this paper, we present a new method based on templates, designed to exploit the discriminatory features, nucleotide polymorphism, and structural homology present in TF binding sites for distinguishing them from nonbinding sites

    Broadband antennas

    No full text
    Apart from the sleeve monopole, this chapter discusses other broadband antennas as well, and the performance evaluation in terms of various measured and simulated parameters is also illustrated. This chapter will help antenna engineers get a better understanding of the antennas discussed and make a comparison with other broadband antennas. The broadband antennas that have been discussed in this chapter include: Low-profile sleeve monopole antenna, Dual-sleeve monopole antenna, Disc-conical sleeve monopole antenna, Wideband with dumbbell-shaped open sleeve antenna, Wideband unidirectional patch antenna with G-shaped strip feed, Wideband folded bowtie antenna with G-shaped strip feed and tuning stubs, Wideband bowtie antenna with inverted L-shaped coupling feed and tuning stubs

    Digital Image Splicing Using Edges

    No full text
    • …
    corecore