31 research outputs found

    Rephasing Invariants of CP and T Violation in the Four-Neutrino Mixing Models

    Full text link
    We calculate the rephasing invariants of CP and T violation in a favorable parametrization of the 4x4 lepton flavor mixing matrix. Their relations with the CP- and T-violating asymmetries in neutrino oscillations are derived, and the matter effects are briefly discussed.Comment: RevTex 9 pages. Slight changes. Phys. Rev. D (in press

    Implications of the KamLAND Measurement on the Lepton Flavor Mixing Matrix and the Neutrino Mass Matrix

    Get PDF
    We explore some important implications of the KamLAND measurment on the lepton flavor mixing matrix VV and the neutrino mass matrix MM. The model-independent constraints on nine matrix elements of VV are obtained to a reasonable degree of accuracy. We find that nine two-zero textures of MM are compatible with current experimental data, but two of them are only marginally allowed. Instructive predictions are given for the absolute neutrino masses, Majorana phases of CP violation, effective masses of the tritium beta decay and neutrinoless double beta decay.Comment: RevTex 15 pages (4 PS figures included

    Preparation and investigation of photoelectrochemical behaviour of Ce and W co-doped TiO2 composite film

    No full text
    Cerium and tungsten co-doped TiO2 photocatalyst composite material has been fabricated by using a facile sol-gel method. The composite was coated on ITO film via electrophoretic deposition method. In order to understand the morphology, structure and optical properties, the composite material was characterized with X-ray diffraction, scanning electron microscope, UV-vis and Fourier transform infrared spectroscopy. The results showed a uniformly distributed porous composite film on ITO substrate. Cerium and tungsten as oxides are dispersed on the substrate. A significant photocurrent was developed under solar simulator irradiation and the value was observed higher as compared with pure TiO2 film electrodes

    Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors

    Get PDF
    In this study, embedded strain sensors based on the principle of piezoresistivity were fabricated by epoxy-based composites filled with different contents of carbon nanofibers (CNFs). The piezoresistive performances and relevant parameters including gauge factor, linearity, repeatability and hysteresis of these sensors were investigated. A compensation circuit was proposed to eliminate the influence of temperature on sensing signals of the sensors. The CNFs/epoxy sensors were embedded into concrete cylinders to monitor their compressive strains under monotonic and cyclic loadings, thereby assessing practical applications of the CNFs/epoxy sensors as strain sensors for monitoring concrete structures. The results indicate that the sensors containing 0.58 vol% of CNFs, which have a gauge factor of 37.1, a linearity of 5.5%, a repeatability of 3.8% and a hysteresis of 6.3%, exhibited better piezoresistive performance compared to those containing 0.29 vol% of CNFs. The calibration and monitoring curves exhibited a consistent variation trend when the cylinders embedded with sensors were subjected to monotonic and cyclic loadings. This demonstrates that the CNFs/epoxy sensors have considerable potential to be used as embedded strain sensors for structural health monitoring of concrete structures
    corecore