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Highlights 
• Embedding CNFs/epoxy sensors into concrete components is studied at first time. 
• The piezoresistive performances of the CNFs/epoxy sensors are evaluated. 
• A compensation circuit is proposed to eliminate the effect of temperature. 
• The calibration and monitoring curves exhibited a consistent variation trend. 

Abstract 
In this study, embedded strain sensors based on the principle of piezoresistivity were fabricated by epoxy-based 
composites filled with different contents of carbon nanofibers (CNFs). The piezoresistive performances and 
relevant parameters including gauge factor, linearity, repeatability and hysteresis of these sensors were 
investigated. A compensation circuit was proposed to eliminate the influence of temperature on sensing signals 
of the sensors. The CNFs/epoxy sensors were embedded into concrete cylinders to monitor their compressive 
strains under monotonic and cyclic loadings, thereby assessing practical applications of the CNFs/epoxy sensors 
as strain sensors for monitoring concrete structures. The results indicate that the sensors containing 0.58 vol% 
of CNFs, which have a gauge factor of 37.1, a linearity of 5.5%, a repeatability of 3.8% and a hysteresis of 6.3%, 
exhibited better piezoresistive performance compared to those containing 0.29 vol% of CNFs. The calibration 
and monitoring curves exhibited a consistent variation trend when the cylinders embedded with sensors were 
subjected to monotonic and cyclic loadings. This demonstrates that the CNFs/epoxy sensors have considerable 
potential to be used as embedded strain sensors for structural health monitoring of concrete structures. 

Keywords 
Carbon nanofibers (CNFs), Embedded sensor, Strain monitoring, Concrete cylinders, Piezoresistivity 

1. Introduction 
Civil infrastructures often suffer deterioration, damage accumulation or even sudden collapse due to fatigue 
load, environmental factors and a range of natural disasters, etc. Structural health monitoring (SHM) is a method 
to continuously monitor and evaluate the state of civil infrastructures. SHM systems use a group of sensors to 
measure real-time data of strain, displacement, temperature, etc. of structures, which help engineers and 
owners to detect anomalies in the structure’s performance in timely manner [1]. With the aid of SHM, the 
structural strengthening or retrofitting measures can be timely established to ensure the safety 
and serviceability of the structure [2]. 

Conventional strain sensors, such as electrical resistance strain gauges, fiber optic 
sensors and piezoelectric ceramics, have been widely used in SHM [3], [4]. However, utilization of these sensors 
is often limited due to some drawbacks including low sensitivity, high cost, poor durability, and fragility. In these 
circumstances, using piezoresistive composites to fabricate strain sensors has attracted extensive attention [2]. 
The sensors prepared by piezoresistive composites have advantages of multi-functionality, high sensitivity, cost 
effectiveness, excellent durability, and relatively easy fabrication processes, which are distinct from the 
conventional SHM sensors [5], [6]. The theory making these sensors work is the principle of piezoresistivity, 
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which is defined as a change in electrical resistance in response to the mechanical strain applied to the 
composites [7]. One common technique of the piezoresistive sensors are to incorporate electrically conductive 
reinforcement fillers (e.g., carbon nanotubes (CNTs) [2], [8], [9], 
carbon nanofibers (CNFs) [10], [11], [12], [13], graphene nanoplatelets [14], carbon black [9], [15], and nickel 
powder [16]) into dielectric or semiconducting matrix (e.g., rubber [17], epoxy [10], [18], and 
cement [19], [20], [21], [22], [23]). 

Considerable number of researches have proved that it is feasible to prepare the sensors by piezoresistive 
composites for strain monitoring [18], [24], [25], [26], [27], [28]. Monteiro et al. [27] investigated a piezoresistive 
carbon black cement composite for traffic monitoring. A linear and reversible piezoresistive performance was 
found with gauge factors ranging from 40 to 60. Nam et al. [28] investigated the piezoresistive sensing 
capabilities of glass and carbon fiber-reinforced plastic composites incorporating CNTs and concluded that these 
composites showed continuous sensing characteristics. Luo et al. [25] explored the piezoresistive properties of 
cement composites reinforced by functionalized CNTs. Experimental results indicated that excellent 
piezoresistive properties were achieved at the doping level of 0.3% by weight, wherein high strain 
sensitivity was recorded as 286.6 for the cases of adding small amounts of surfactant. 

Most current researches [18], [24], [25], [26], [27], [28] mainly focus on the piezoresistive performances of the 
sensors themselves under different conditions. However, only a few researches studied the strain 
sensing capability of piezoresistive sensors embedded into concrete structures have been 
undertaken [29], [30], [31], [32]. Xiao et al. [30], [31] investigated strain sensing properties of cement-based 
sensors embedded into concrete cylinders and beams, respectively. The results indicated that the embedded 
cement-based sensors had nice strain-sensing abilities. However, cement-based sensors are greatly affected by 
environmental humidity. Therefore, humidity insulation method should be used to guarantee the sensing 
precision of cement-based composites under various ambient conditions [30]. Additionally, the polarization 
effect of cement matrix adversely affects the accuracy of the monitoring [33]. Compared to cement, epoxy has 
excellent chemical resistance, wear resistance, electric insulation, waterproof function and large 
deformation range. If it was used as the matrix for the compressive strain sensors, it could not only eliminate the 
effects of humidity and polarization, but also enable the whole process monitoring of steel or fiber reinforced 
polymer (FRP) confined concrete structures with a large ultimate failure strain subjected to compressive 
loadings, which cannot be achieved by the cement-based sensors with a relative small strain monitoring 
capacity. Therefore, it is worth to study the performance of embedded epoxy-based sensors for strain 
monitoring of concrete components subjected to compression. 

In this study, the sensors were prepared by CNFs/epoxy composites containing two different contents of CNFs. 
The piezoresistive performances of the strain sensors themselves were investigated firstly, followed by 
the exploration of relevant parameters including gauge factor, linearity, repeatability and hysteresis. Secondly, a 
compensation circuit was proposed to eliminate the influence of temperature on sensing signals of the sensor. 
Finally, concrete cylinders embedded with CNFs/epoxy sensors were subjected to monotonic and cyclic 
loadings to explore the strain sensing capability of the sensors, thereby assessing practical applications of the 
CNFs/epoxy sensors as compressive strain sensors for concrete structures. 

2. Experimental program 
2.1. Materials 
Pyrograf-III PR-24-XT-HHT (manufactured by Prograf Products, Inc., USA), which are heat treated CNFs with 
diameters of 70–200 nm and lengths of 50–200 μm, were employed as the nanofillers. The properties of the 
CNFs provided by the manufacturer are shown in Table 1. The epoxy used as the matrix of 
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the nanocomposite was produced by Tianjin Swancor Wind Power Materials Co., Ltd., China. The epoxy is mixed 
by two parts: SWANCOR 2511-1A (main agent) and SWANCOR 2511-1BS (curing agent) with a ratio of 10:3 in 
weight, or 30:11 in volume. It has low viscosity, moderate gel time, nice mechanical properties, high heat 
deflection temperature (HDT), and good wettability to carbon fibers. The CNFs in the amount of 0.29% and 
0.58% by volume of composite were added to the composites, and the corresponding sensors are called S0.29 and 
S0.58, respectively, in this paper. Acetone was used as diluting agent in the amount of 2% by volume of 
composite. Copper wire mesh with the size of 20 mm × 30 mm was used as the electrodes of the sensors. 
Commercial ready mixed concrete was used for the construction of the concrete cylinders. The mean 28-
day compressive strength of the concrete cylinders was 33.5 MPa. 

Table 1. Properties of the CNFs. 
Diameter (nm) Length (μm) Aspect ratio Surface area (m2/gm) Moisture (wt%) 
70–200 50–200 250–2800 41 <5 

 

2.2. Specimens 
2.2.1. CNFs/epoxy sensors 
It is well established that the homogeneity of nanofibers dispersion into the epoxy matrix is one of the most 
important factors affecting the composite’s electrical and piezoresistive performance. Two methods, 
including mechanical stirring and ultrasonic treatment, were used to disperse CNFs into epoxy matrix in this 
research. The CNFs/epoxy sensors were prepared by following procedure as shown in Fig. 1: (1) Different 
amounts of CNFs (0.29 vol% and 0.58 vol%) were dispersed into acetone by a mechanical stirrer (Model SFJ-400, 
Shanghai Modern Environmental Engineering Technology Co., Ltd., China) at high speed (1500 r/min) for 10 min, 
and then sonicated by Branson 2800 Ultrasonic Cleaner (Model 2510 E-DTH, 100 W 40 kHz, Branson Ultrasonic 
Co., Ltd., USA) for 8 h at 20 °C to get CNFs-acetone mixture. (2) Heated (at 60 °C for 2 min) SWANCOR 2511-1A 
was dissolved in the CNFs-acetone mixture via stirring at high speed (1500 r/min) for 20 min and ultrasonically 
dispersing at 60 °C for 8 h to get a slurry-like mixture. (3) The mixture was placed in a vacuum oven (Model DZ-
2BC, Tianjin Taisite Instrument Co., Ltd., China) to remove acetone and air bubbles. (4) After the mixture was 
cooled, the curing agent (SWANCOR 2511-1BS) was added and mixed by mechanical stirring at low speed 
(500 r/min) for 5 min. (5) The CNFs/epoxy mixture was poured into a silicone mold, which was brushed a layer of 
oil for easily removing the specimen after curing, and two copper wire mesh electrodes were embedded in the 
mixture. On one hand, the size of the sensor needs to be as small as possible in order to prevent the sensor from 
damaging the concrete structure. On the other hand, it is difficult to place the sensor in concrete cylinder if it is 
too small. According to the research of Han et al. [16], the size of the sensor was set to 
20 mm × 20 mm × 40 mm. (6) The sensors were pre-cured at room temperature for 24 h followed by a post-cure 
for additional 8 h at 80 °C. 

 
Fig. 1. Preparation process of the CNFs/epoxy sensors. 
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2.2.2. Concrete cylinders 
The concrete cylinders with 150 mm in diameter and 300 mm in height were prepared by following procedure: 
(1) The calibrated sensor was placed at the center of a polyvinyl chloride (PVC) mold. The sensor was tied to a 
thin steel wire that had been fixed to the PVC mold. (2) Concrete was slowly poured into the PVC mold. (3) An 
external vibrator was used to compact concrete after pouring. (4) The cylinders were demolded after 24 h and 
then cured in a curing room maintaining temperature of 20 ± 3 °C and relative humidity of 95% for 28 days. 

2.3. Measurements 
2.3.1. Piezoresistive test for sensors 
The piezoresistive experiments were performed by applying monotonic and cyclic uniaxial loadings, and 
simultaneously measuring the strain and the electrical resistance of the CNFs/epoxy sensors. The load was 
applied by an electronic universal testing machine (Model WDE-200E, Jinan Gold Testing Machines Inc., China) 
under displacement control. Two cyclic loading paths were applied in this research. Loading type 1 (shown in Fig. 
2a) consisted of eight load-unload cycles with constant amplitudes of 25 MPa. Loading type 2 (shown in Fig. 2b) 
consisted of five cycles with incremental amplitudes of 10, 15, 20, 25 and 35 MPa, and repeated three times for 
each amplitude. In this study, six specimens of S0.29 and S0.58 CNFs/epoxy sensor were used for piezoresistive 
test. For each type of sensors, three specimens were tested under monotonic uniaxial loads until their failures, 
and the remaining three specimens were first subjected to constant amplitude cyclic loading and then subjected 
to incremental cyclic loading to simulate realistic loading conditions. The two-electrode method was chosen to 
measure the electrical resistance rather than the four-electrode method due to its better suitability in terms of 
implementation [27]. During the test process, the DC resistance was tested by two-electrode method via the 
Keithley 2100 digital multimeter (Keithley Instruments Inc., USA) and the strain was monitored by one pair 
of electrical resistance strain gauges which were glued symmetrically in the axial direction at the opposite sides 
of the middle section of the sensor sample. The DH3820 strain acquisition device (Donghua Testing Technology 
Co., Ltd., China) was employed to record strain data. The experimental setup of piezoresistive test is shown 
in Fig. 3. In order to explore the effect of loading rate on piezoresistive properties, the sensors with 0.29 vol% of 
CNFs were chosen to test piezoresistivity under different loading rates (0.2–5 mm/min). 

 
Fig. 2. Cyclic loading paths: (a) loading type 1; (b) loading type 2. 
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Fig. 3. The experimental setup for piezoresistive test: (a) schematic diagram (units: mm); (b) actual picture. 
 

Because the deformation of the sensors under compression is small, the changes in the separation (L) between 
the two electrodes can be neglected [34]. Therefore, the fractional change in electrical resistivity (FCR), f, is 
equivalent to the fractional change in electrical resistance: 

(1) 𝑓𝑓 = Δ𝜌𝜌
𝜌𝜌0

=
Δ𝑅𝑅×𝐴𝐴

𝐿𝐿

𝑅𝑅0×𝐴𝐴
𝐿𝐿

= Δ𝑅𝑅
𝑅𝑅0

= 𝑅𝑅𝑡𝑡−𝑅𝑅0
𝑅𝑅0

 

where Δρ and ΔR are the changes in electrical resistivity and resistance, respectively; ρ0 and R0 are the initial 
resistivity and resistance, respectively, of the sensor without loading; A is the cross-sectional area of the 
sensor; L is the separation between the two electrodes; and Rt is the resistance at time t during the test. 

2.3.2. Temperature effect tests for sensors 
Temperature has a significant influence on the CNFs/epoxy sensor, so the effect of temperature on electrical 
resistivity was investigated. Three specimens for each type of CNFs/epoxy sensor were tested for this purpose. 
Before temperature variation tests, the specimens were all heated to 60 °C and isothermal treated for 5 min, 
and then cooled to 20 °C to eliminate the effect of thermal history developed during the preparation process. 
The sensors were placed in the high-low temperature tester (Lin Pin Co., Ltd., China), and the temperature range 
was set from −30 to 60 °C at a heating rate of 2 °C/min. The thermosensitive properties of the sensors were 
measured using the two-electrode method by using the Keithley 2100 digital multimeter in the process of 
temperature changes. Meanwhile, the strain was monitored by the DH3820 strain acquisition device. In order to 
investigate the reproducibility of the thermosensitive behaviors, the electric resistivity measurements were 
conducted for three heating-cooling cycles. 

2.3.3. Strain monitoring tests for concrete cylinders 
CNFs/epoxy strain sensors were calibrated before they were embedded into concrete cylinders. Concrete 
cylinders with embedded sensors were subjected to uniaxial compressive load using a hydraulic servo pressure 
testing machine with 3000 kN capacity. Four displacement transducers were used to measure the local axial 
deformation of the cylinders. For comparison purposes, three pairs of electrical resistance strain gauges in axial 
and lateral directions were also glued symmetrically at the opposite sides of the middle section of the cylinders 
(shown in Fig. 4) to monitor the strains. The corresponding electrical resistance of the embedded CNFs/epoxy 
sensor was measured simultaneously using the Keithley 2100 digital multimeter. The experimental setup of the 
strain monitoring test is shown in Fig. 5. In this study, eight concrete cylinders embedded with CNFs/epoxy 
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sensor were made, in which four cylinders embedded with S0.29 and the other four cylinders embedded with 
S0.58. For each type of sensor, two corresponding cylinders were tested under monotonic compressive loads until 
their failures, and the remaining two cylinders were first subjected to constant cyclic loading and then subjected 
to incremental amplitude cyclic loading to simulate realistic loading conditions. Responses of the sensors when 
the cylinders subjected to cyclic loadings were also used to verify the stability and repeatability of the embedded 
sensors. For the constant amplitude cyclic loading, the peak value was 15 MPa and the valley value was 
0.75 MPa. The incremental amplitude cyclic loading was achieved by gradually increasing the loading amplitude 
to 10, 15, 20, 25 and 35 MPa, respectively. The two loading paths are similar to those of piezoresistive 
measurement (shown in Fig. 2). 

 
Fig. 4. Layout of strain gauges and displacement transducers (unit: mm). 
 

 
Fig. 5. Experimental setup of strain monitoring test. 
 

3. Results and discussions 
3.1. Piezoresistive performances of CNFs/epoxy sensors 
3.1.1. Effect of loading rate on piezoresistive performances 
The effect of loading rate on piezoresistive performances of CNFs/epoxy sensors was explored to select the 
appropriate loading rate. Fig. 6 shows FCR vs strain under different loading rates. It shows that the piezoresistive 
performances of the sensors were almost unaffected by the loading rate lower than 0.4 mm/min, while the 
noticeable fluctuation of the curve was observed in the case of the loading rate of 1.5 mm/min. This 
phenomenon reveals that large loading rate could deteriorate the stability of the piezoresistive performances. 
Therefore, the loading rate of 0.4 mm/min was chosen to ensure the sensors possessing stable piezoresistive 
performances in the following tests. 
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Fig. 6. FCR vs compressive strain under different loading rates. 
 

3.1.2. Piezoresistive performances of CNFs/epoxy sensors under monotonic and cyclic loadings 
Fig. 7 shows the variation of FCR under monotonic loading for S0.29 and S0.58. It can be seen from Fig. 7 that the 
FCR of the sensors increased linearly with the increase of the applied strain up to a certain value, and then 
decreased. The piezoresistive behavior is due to the nanoscale structural change in the percolation and 
corresponds to a stochastic separation of the conducting pathways due to the increased strain. The transition 
points in Fig. 7 are close to the elastic deformation limits of the sensors, beyond which the specimens enter 
the plastic zone. The compression of the epoxy matrix leads to a reduction of the distances between the 
neighboring CNFs. According to the conductive mechanisms, i.e., tunneling conduction theory [35] and 
percolation conduction (also called contacting conduction) theory [36], a reduction of the distance between 
CNFs provokes an evident decrease of electrical resistivity. When the specimen enters plastic stage with the 
increase of load, micro-cracks are initiated and developed in the specimens. Therefore, fewer contacts between 
the CNFs lead to the decrease of conduction paths. These are believed to be the main reasons that the 
CNFs/epoxy composites exhibited the piezoresistive responses shown in Fig. 7. For the sensors filled with 
0.29 vol% and 0.58 vol% of CNFs, the maximum FCR values are 37% and 50% corresponding to the strains of 
1.25% and 1.5%, respectively. 

 
Fig. 7. Response of FCR to strain under monotonic loading. 
 

In order to evaluate the piezoresistive stability of CNFs/epoxy sensors, they were subjected to constant 
amplitude cyclic loading with a loading rate of 0.4 mm/min firstly. Fig. 8 shows the piezoresistive response of 
S0.29 subjected to constant amplitude cyclic loading. In the subsequent compressing-releasing cycles, the sensor 
S0.29 essentially recovered its resistance after releasing (shown in Fig. 8a). As shown in Fig. 8b, there is a positive 
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correlation between FCR and strain. S0.58 exhibited similar trends as shown in Fig. 9. Therefore, these sensors 
have clear strain sensitivity with a low noise level. 

 
Fig. 8. Piezoresistive performance of S0.29 under constant amplitude cyclic loading: (a) FCR and strain vs time; (b) FCR vs 
strain. 
 

 
Fig. 9. Piezoresistive performance of S0.58 under constant amplitude cyclic loading: (a) FCR and strain vs time; (b) FCR vs 
strain. 
 

For a more complete understanding of CNFs/epoxy sensors’ piezoresistive performances, the relevant 
parameters including gauge factor, linearity, repeatability and hysteresis were investigated. The relationship 
between input value ε (compressive strain) and output value f (FCR value) of the sensor was obtained using 
linear fit by least square method, which can be expressed as 

(2) 𝑓𝑓0.29 = 29.8𝜀𝜀  

(3) 𝑓𝑓0.58 = 37.1𝜀𝜀 

Gauge factor, S, also called strain sensitivity coefficient, which is defined as the ratio between the fractional 
change in electrical resistance (ΔR/𝑅𝑅0) and the strain (ε), is given by Eq. (4): 

(4) 𝑆𝑆= Δ𝑅𝑅/𝑅𝑅0
𝜀𝜀

 

Linearity, E, is the offset between strain-FCR curves and the fitted regression line, which is defined as: 

(5) 𝐸𝐸= Δ𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝐹𝐹,𝑆𝑆

× 100% 

where Δmax is the maximum deviation of strain-FCR curves from the fitted regression line, and fF.s is the output 
range. 

Repeatability, R, is the degree of repetition of the output values under same conditions, which is expressed as: 

(6) 𝑅𝑅= Δ𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝐹𝐹.𝑆𝑆

× 100%  

where ΔRmax is the maximum repeat difference, which is the difference of FCR for the same strain in the same 
process during loading and unloading. 

Hysteresis, H, means that the resistivity of the specimens does not completely recover its initial value after 
unloading in certain cases, which is determined by 
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(7) 𝐻𝐻= Δ𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝐹𝐹.𝑆𝑆

× 100%  

where Δfmax is the maximum difference of FCR in all processes during the cyclic loading. 

The results of the above parameters are shown in Table 2. It can be observed from Table 2 that S0.58 has a better 
piezoresistive performance compared to S0.29. The plot in Fig. 9b also demonstrates good linearity and 
repeatability of the piezoresistive performances of S0.58 by the linear relationship between FCR and strain with 
very small scatter. 

Table 2. Parameters of CNFs/epoxy sensors. 
Parameters Input range 

(%) 
Output range 
(%) 

Gauge 
factor 

Linearity (%) Repeatability (%) Hysteresis (%) 

S0.29 0–0.9 0–26.0 29.8 8.1 6.6 14.6 
S0.58 0–0.8 0–30.8 37.1 5.5 3.8 6.3 

 

Fig. 10 displays the time histories of strain and FCR for S0.29 and S0.58 under incremental amplitude cyclic loading. 
It can be seen that the electrical resistivity of the sensors varied distinctly in response to the applied strain. 
During each loading cycle, the resistivity values decreased with the increase of compressive strain, resulting in a 
negative FCR, and then increased to the initial value when the unloading branch of the cycle took place. It can be 
observed from the figure that the values of FCR increased with the increase of the loading amplitude and the 
content of CNFs. 

 
Fig. 10. Time histories of strain and FCR for (a) S0.29 and (b) S0.58. 
 

3.2. Effect of temperature on electrical resistivity of CNFs/epoxy sensors 
Temperature cycling test consisting of three heating-cooling cycles with the range of −30 °C to 60 °C was 
performed in this section. The reference resistances for this experiment are those at −30 °C. The responses of 
strain and FCR to temperature for S0.29 and S0.58 are shown in Fig. 11. There is a clear increase of FCR magnitudes 
with the temperature growth, and S0.58 shows a higher sensitivity towards temperature than that of S0.29. It can 
be observed from Fig. 11a and c that FCR and strain have a similar trend corresponding to the change of 
temperature, which indicates that the effect of temperature on resistivity is closely related to that of 
sensors’ deformation. The change in dimensions of the CNFs subjected to temperature change is quite small 
compared to that of the epoxy, and can be ignored. Therefore, when the epoxy expands with the increase of 
temperature, it increases the distance between CNFs. The increased distance between CNFs increases the 
tunneling gap, which causes the decrease of the resistivity of the CNFs/epoxy sensors. The plots in Fig. 11b and d 
demonstrate a high temperature dependence of the CNFs/epoxy sensors, while a slight hysteresis was observed 
in both S0.29 and S0.58. The reason for the hysteresis could be the slow volume expansion/contraction processes 
of the epoxy causing that the internal conductive network could not be restored in time. 
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Fig. 11. Responses of strain and FCR to temperature: (a) FCR and strain vs temperature for S0.29; (b) FCR vs temperature for 
S0.29; (c) FCR and strain vs temperature for S0.58; and (d) FCR vs temperature for S0.58. 
 

Temperature compensation is necessary due to the high temperature dependence of the CNFs/epoxy sensors. 
One of the effective ways to eliminate the influence of temperature on FCR of the sensor is to set up a 
compensation circuit. The mechanism of the compensation circuit is shown in Fig. 12. In the figure, RT represents 
the test sensor and RC represents the compensation sensor, which is not subjected to the compressive loading. 
R1 and R2 are precision resistors used to balance the bridge voltage. The compensation circuit is similar to the 
Wheatstone half-bridge configuration. The conditions for effective temperature compensation with a 
Wheatstone bridge are that all elements have same temperature coefficient and nominal resistance values. 
According to the compensation circuit, the output value fT of the test sensor RT is expressed as: 

(8) 𝑓𝑓𝑇𝑇 = 𝑓𝑓𝑇𝑇𝐿𝐿 + 𝑓𝑓𝑇𝑇𝑇𝑇 + 𝑓𝑓𝑇𝑇𝑂𝑂 

where 𝑓𝑓𝑇𝑇𝐿𝐿, 𝑓𝑓𝑇𝑇𝑇𝑇, and 𝑓𝑓𝑇𝑇𝑂𝑂 are the FCR changes of the test sensor caused by loading, temperature, and other factors, 
respectively. 

 
Fig. 12. Schematic of the compensation circuit. 
 

The output value fC of the compensation sensor RC is expressed as: 

(9) 𝑓𝑓𝐶𝐶 = 𝑓𝑓𝐶𝐶𝑇𝑇 + 𝑓𝑓𝐶𝐶𝑂𝑂  

where 𝑓𝑓𝐶𝐶𝑇𝑇 and 𝑓𝑓𝐶𝐶𝑂𝑂 are the FCR changes of the compensation sensor caused by temperature and other factors, 
respectively. 

Based on Eqs. (8), (9), the overall output value f of the compensation circuit is given by: 

(10) 𝑓𝑓 = 𝑓𝑓𝑇𝑇 − 𝑓𝑓𝐶𝐶 = 𝑓𝑓𝑇𝑇𝐿𝐿 + (𝑓𝑓𝑇𝑇𝑇𝑇 − 𝑓𝑓𝐶𝐶𝑇𝑇) + �𝑓𝑓𝑇𝑇𝑂𝑂 − 𝑓𝑓𝐶𝐶𝑂𝑂� 
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Since the test sensor RT and the compensation sensor RC have almost exactly same temperature coefficient, 
nominal resistance values and other performances, the contributions of temperature and other factors to the 
compensation circuit are negligible, i.e., 𝑓𝑓𝑇𝑇𝑇𝑇 − 𝑓𝑓𝐶𝐶𝑇𝑇 ≈ 0 and 𝑓𝑓𝑇𝑇𝑂𝑂 − 𝑓𝑓𝐶𝐶𝑂𝑂 ≈ 0. Therefore, the temperature influence is 
compensated by the compensation circuit, and the output value of the compensation circuit is 

(11) 𝑓𝑓 = 𝑓𝑓𝑇𝑇𝐿𝐿 

In order to verify the validity of the compensation circuit, both the test and compensation sensors for S0.29 and 
S0.58 were placed in the environment with same temperature, and the output values of the compensation circuit 
were tested as the temperature was changed. Fig. 13 depicts the output values of S0.29 and S0.58 with 
temperature compensation when the environmental temperature was changed from −30 °C to 60 °C. The 
column charts show the average values with error bars obtained from three samples for each type of sensor. In 
the entire temperature range from −30 °C to 60 °C, the output value of the compensation circuit was below 1%, 
which is neglectable compared to that of one sensor without compensation (shown in Fig. 11b and d). It can be 
observed from Fig. 13 that the compensation circuit can be used to eliminate the influence of temperature on 
the output value of CNFs/epoxy sensor. In fact, the compensation circuit can be used not only for excluding 
temperature effect, but also for removing the effect of humidity and other environmental factors. However, the 
specific effect of humidity on the CNFs/epoxy sensor will be explored in the future study. 

 
Fig. 13. Output values of (a) S0.29 and (b) S0.58 with temperature compensation. 
 

Since the volume of the concrete member is not large, the temperature inside and outside of the concrete 
member is close after the hydration reaction of the concrete is completed. In this case, during the strain 
monitoring test of concrete cylinder, the temperatures of the test sensors (embedded in concrete cylinder) and 
the compensation sensors are almost the same. Therefore, the compensation circuit is also suit for the sensors 
embedded in concrete components. 

3.3. Strain monitoring of concrete cylinders with embedded sensors 
The previous discussions indicate that CNFs/epoxy sensors have excellent piezoresistive performances. 
Therefore, they were embedded in concrete cylinders to test their ability to monitor strains in the cylinders 
subjected to compression. It should be noted that during the initial period of cyclic loading, the peak value of 
FCR after each cycle showed a downward drift tendency, i.e., the conduction path was unstable. Therefore, pre-
pressure for the sensors were carried out in order to achieve a stable conductive state. The calibration of the 
sensors was also performed before they were embedded into concrete cylinders. The applied strain 
amplitude during the calibration was about 0.5%, which is in the elastic range of the sensor and would not 
undermine the monitoring capability of the sensor. Fig. 14 shows typical calibration curves of the two types of 
sensors under monotonic and cyclic loadings. Based on the calibration curves, the relationship between the 
strain and FCR value of the sensors during calibration were obtained using linear fit by least square method, 
which can be expressed as 

(12) 𝜀𝜀𝐶𝐶𝐶𝐶0.29 = 0.032𝑓𝑓𝐶𝐶
𝜀𝜀𝐶𝐶𝐶𝐶0.58 = 0.026𝑓𝑓𝐶𝐶
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where εCS0.29 and εCS0.58 are the strains of S0.29 and S0.58 during calibration, respectively; fC is the fractional change 
in resistivity of the sensors during calibration. According to Eq. (12), the gauge factors (the ratio between FCR 
and strain) of S0.29 and S0.58 are 31.3 and 38.5, respectively, during calibration. 

 
Fig. 14. The calibration curves of two types of sensors: (a) S0.29 and (b) S0.58 under monotonic loading; (c) S0.29 and (d) 
S0.58 under cyclic loading. 
 

The concrete cylinders with embedded sensors were subjected to monotonic compressive loading till their 
failure and the typical monitoring curves are shown in Fig. 15. The average strength of the concrete cylinders 
without embedded sensor was 33.5 MPa. The average strengths of the concrete cylinders embedded with 
S0.29 and S0.58 were 32.6 MPa and 32.1 MPa, respectively. Because the size of the sensor is much smaller than 
that of the concrete structural members, the sensor has little effect on the strength of the concrete members. In 
addition, the study of Xiao et al. [30] shows that the strengths of concrete columns with embedded sensors 
were only slightly lower than those of concrete columns without embedded sensors, which indicates that the 
effect of sensors embedment on mechanical property is small and can be negligible. It can be observed from Fig. 
15 that the FCR of the sensors increased linearly with the increase of the applied strain. Based on the monitoring 
curves, the relationships between the strains of the cylinder and the FCR values of the sensors during monitoring 
were obtained using linear fit by least square method, which can be expressed as 

(13) 𝜀𝜀𝑀𝑀𝐶𝐶0.29 = 0.013𝑓𝑓𝑀𝑀
𝜀𝜀𝑀𝑀𝐶𝐶0.58 = 0.012𝑓𝑓𝑀𝑀

 

where εMS0.29 and εMS0.58 are the strains of concrete cylinders embedded with S0.29 and S0.58 during monitoring, 
respectively; fM is the fractional change in resistivity of the sensors during monitoring. Similarly, according to 
Eq. (13), the gauge factors of S0.29 and S0.58 are 76.9 and 83.3 during monitoring, respectively. In addition, the 
strength of the embedded sensors should match with that of concrete structures to avoid failing earlier than the 
monitoring object. The compressive strength of the CNFs/epoxy sensor was about 75 MPa, which is larger than 
two times of that of the concrete cylinders (33.5 MPa). Moreover, it was observed that the CNFs/epoxy sensors 
in the broken concrete cylinders were intact after the axial compression test, which indicates that the sensor is 
able to monitor the whole damage process of the concrete component. 

 
Fig. 15. The monitoring and calibration curves of two types of sensors under monotonic loading. 
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Fig. 15 also presents a comparison between the calibration and monitoring curves of the sensors. It can be 
observed from Fig. 15 that there is a mismatch between the calibration and monitoring curves. The Poisson's 
ratio of CNF/epoxy sensor (about 0.4) is about twice as much as that of the concrete cylinder (approximately 
0.2), and the elastic modulus of the sensor (3.2 GPa) is much smaller than that of the concrete cylinder 
(28.9 GPa). Because of the differences of the elastic moduli and the Poisson's ratios between the concrete 
cylinders and the CNFs/epoxy sensors, the sensors’ lateral deformations were confined by the surrounding 
concrete. Based on the conductive mechanism of the composite, the lateral deformation of the sensor is 
reduced, leading to a decrease in the spacing of the internal CNFs. This is conducive to the formation 
of conductive paths. Therefore, the FCR of the lateral constrained sensor is larger when the same axial strain is 
applied. According to the definition of the gauge factor (S) shown in Eq. (4), the sensors embedded in concrete 
cylinders subjected to axial compression had larger gauge factors than the sensors themselves during 
calibration. This is the reason why a mismatch between the two types of curves happened as shown in Fig. 15. 
An effective way to solve this mismatch problem is to introduce a correction factor, k, so that the strain of the 
concrete cylinders measured by the CNFs/epoxy sensor is consistent with that measured by the 
traditional electrical resistance strain gauge. The strains measured by CNFs/epoxy sensors can be obtained by 
dividing the FRC values by the gauge factors of the sensors. By comparing Eqs. (12) and (13), the correction 
factors for S0.29 and S0.58 are 0.41 and 0.46, respectively. The correction factor is closely related to the 
performance of sensors and concrete components. Therefore, the correction factor here is only valid for the 
concrete used in this study. The correct factor should be tested and calibrated when the sensor is used for 
different concrete. The relationships of strain values between calibration and monitoring can be expressed as 

(14) 𝜀𝜀𝑀𝑀𝐶𝐶0.29 = 0.41𝜀𝜀𝐶𝐶𝐶𝐶0.29
𝜀𝜀𝑀𝑀𝐶𝐶0.58 = 0.46𝜀𝜀𝐶𝐶𝐶𝐶0.58

 

 

In order to simulate real loading conditions and verify the stability and repeatability of the embedded sensors, 
constant and incremental amplitude cyclic loadings were applied to the cylinders. The maximum stress for 
monitoring test was 15 MPa, which was same as the amplitude of the applied stress during calibration. The 
typical monitoring curves of two types of sensors under constant and incremental amplitude cyclic loadings are 
shown in Fig. 16. These curves depict the relationship between the FCR of sensors and the strain of the 
cylinders. However, a little fluctuation of the monitoring curves was observed as the cylinders and sensors were 
subjected to cyclic loadings. Fig. 16 shows that the instantaneous response of the FCR closely follows the change 
of the strain, which indicates that the resistivity of the sensor varies synchronously with the strain of the 
cylinder. Fig. 17 shows the strains of concrete cylinders under constant and incremental amplitude cyclic 
loadings, measured by CNFs/epoxy sensors and traditional resistance strain gauges, respectively. Strain 
measured by CNFs/epoxy sensors was obtained by dividing the FRC values with the gauge factors of S0.29 and 
S0.58 (76.9 and 83.3, respectively). As shown in Fig. 17, the strains measured by CNFs/epoxy sensors agree well 
with those of electrical resistance strain gauges. However, the electrical resistance strain gauges were glued at 
the surface of the cylinders and the CNFs/epoxy sensors were embedded inside the cylinders. In addition, the 
test lengths of the electrical resistance strain gauges are longer than that of CNFs/epoxy sensors. Therefore, the 
slight difference between the two monitoring results may be derived from the difference in the measuring range 
and the location of the two monitoring devices. The experimental results reveal that the repeatability and 
stability of strain monitoring of embedded CNFs/epoxy sensors are reliable. However, it is not sensitive to the 
damage of the concrete cylinder. Therefore, when the concrete specimens have micro or meso cracks, the 
performance of the sensor should not change significantly, which is in agreement with the studies of Ou and 
Han [29], and Xiao et al. [30]. 
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Fig. 16. The monitoring curves of two types of sensors: (a) S0.29 and (b) S0.58 under constant amplitude cyclic loading; (c) 
S0.29 and (d) S0.58 under incremental amplitude cyclic loading. 
 

 
Fig. 17. Strains of concrete cylinders measured by electrical resistance strain gauge and CNFs/epoxy sensors under different 
types of loadings: (a) S0.29 and (b) S0.58 under constant amplitude cyclic loading; (c) S0.29 and (d) 
S0.58 under incremental amplitude cyclic loading. 
 

4. Conclusions 
The embedded strain sensors based on the principle of piezoresistivity were fabricated by epoxy-based 
composites filled with two contents of CNFs. CNFs/epoxy sensors were embedded in concrete cylinders to 
monitor their strains under monotonic and cyclic loadings. Both types of embedded CNFs/epoxy sensors 
exhibited excellent piezoresistive performances and strain-monitoring capability. The following conclusions can 
be drawn from this study: 

1) The sensor filled with 0.58 vol% of CNFs possesses better piezoresistive performance compared to that 
with 0.29 vol% of CNFs. 

2) Temperature compensation is necessary due to the high temperature dependence of the CNFs/epoxy 
sensors. The proposed compensation circuit with a half bridge configuration can eliminate the influence 
of temperature on sensing signals of the sensors. 

3) The strains measured by the embedded CNFs/epoxy sensors agree well with those of electrical 
resistance strain gauges after modifying the gauge factors of the sensors, which reveals that the 
embedded CNFs/epoxy sensors can be used to monitor the compressive strain of concrete components. 
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