2 research outputs found

    The curious nonexistence of Gaussian 2-designs

    Full text link
    2-designs -- ensembles of quantum pure states whose 2nd moments equal those of the uniform Haar ensemble -- are optimal solutions for several tasks in quantum information science, especially state and process tomography. We show that Gaussian states cannot form a 2-design for the continuous-variable (quantum optical) Hilbert space L2(R). This is surprising because the affine symplectic group HWSp (the natural symmetry group of Gaussian states) is irreducible on the symmetric subspace of two copies. In finite dimensional Hilbert spaces, irreducibility guarantees that HWSp-covariant ensembles (such as mutually unbiased bases in prime dimensions) are always 2-designs. This property is violated by continuous variables, for a subtle reason: the (well-defined) HWSp-invariant ensemble of Gaussian states does not have an average state because the averaging integral does not converge. In fact, no Gaussian ensemble is even close (in a precise sense) to being a 2-design. This surprising difference between discrete and continuous quantum mechanics has important implications for optical state and process tomography.Comment: 9 pages, no pretty figures (sorry!

    Qutrit squeezing via semiclassical evolution

    No full text
    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function
    corecore