76,135 research outputs found

    Is the f0(600)f_0(600) meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond

    Get PDF
    O(N) linear σ\sigma model is solvable in the large NN limit and hence provides a useful theoretical laboratory to test various unitarization approximations. We find that the large NcN_c limit and the mσ→∞m_\sigma\to \infty limit do not commute. In order to get the correct large NcN_c spectrum one has to firstly take the large NcN_c limit. We argue that the f0(600)f_0(600) meson may not be described as generated dynamically. On the contrary, it is most appropriately described at the same level as the pions, i.e, both appear explicitly in the effective lagrangian. Actually it is very likely the σ\sigma meson responsible for the spontaneous chiral symmetry breaking in a lagrangian with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified; revised version accepted by IJMP

    Modulation efficiency of LiNbO<sub>3</sub> waveguide electro-optic intensity modulator operating at high microwave frequency

    No full text
    The modulation efficiency, at high-frequency microwave modulation, of a LiNbO3 waveguide electro-optic modulator is shown to be degraded severely, especially when it is used as a frequency translator in a Brillouin-distributed fiber-sensing system. We derive an analytical expression for this attenuation regarding the phase-velocity mismatch and the impedance mismatch during the modulation process. Theoretical results are confirmed by experimental results based on a 15 Gb/s LiNbO3 optical intensity modulator

    On the nature of the lightest scalar resonances

    Full text link
    We briefly review the recent progresses in the new unitarization approach being developed by us. Especially we discuss the large NcN_c ππ\pi\pi scatterings by making use of the partial wave SS matrix parametrization form. We find that the σ\sigma pole may move to the negative real axis on the second sheet of the complex ss plane, therefore it raises the interesting question that this `σ\sigma' pole may be related to the σ\sigma in the linear σ\sigma model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure

    Critical behaviours of contact near phase transitions

    Get PDF
    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy, and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviors, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviors in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition.Comment: Final version published in Nat. Commun. 5:5140 doi: 10.1038/ncomms6140 (2014

    Effect of Dzyaloshinskii Moriya interaction on magnetic vortex

    Full text link
    The effect of the Dzyaloshinskii Moriya interaction on the vortex in magnetic microdisk was investigated by micro magnetic simulation based on the Landau Lifshitz Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out of plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality

    Bosonic resonating valence bond wave function for doped Mott insulators

    Full text link
    We propose a new class of ground states for doped Mott insulators in the electron second-quantization representation. They are obtained from a bosonic resonating valence bond (RVB) theory of the t-J model. At half filling, the ground state describes spin correlations of the S=1/2 Heisenberg model very accurately. Its spin degrees of freedom are characterized by RVB pairing of spins, the size of which decreases continuously as holes are doped into the system. Charge degrees of freedom emerge upon doping and are described by twisted holes in the RVB background. We show that the twisted holes exhibit an off diagonal long range order (ODLRO) in the pseudogap ground state, which has a finite pairing amplitude, but is short of phase coherence. Unpaired spins in such a pseudogap ground state behave as free vortices, preventing superconducting phase coherence. The existence of nodal quasiparticles is also ensured by such a hidden ODLRO in the ground state, which is non-Fermi-liquid-like in the absence of superconducting phase coherence. Two distinct types of spin excitations can also be constructed. The superconducting instability of the pseudogap ground state is discussed and a d-wave superconducting ground state is obtained. This class of pseudogap and superconducting ground states unifies antiferromagnetism, pseudogap, superconductivity, and Mott physics into a new state of matter.Comment: 28 pages, 5 figures, final version to appear in Phys. Rev.

    Highlights of the TEXONO Research Program on Neutrino and Astroparticle Physics

    Full text link
    This article reviews the research program and efforts for the TEXONO Collaboration on neutrino and astro-particle physics. The ``flagship'' program is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in Taiwan. A limit on the neutrino magnetic moment of \munuebar < 1.3 X 10^{-10} \mub} at 90% confidence level was derived from measurements with a high purity germanium detector. Other physics topics at KS, as well as the various R&D program, are discussedComment: 10 pages, 9 figures, Proceedings of the International Symposium on Neutrino and Dark Matter in Nuclear Physics (NDM03), Nara, Japan, June 9-14, 200

    Scalars in the hadron world: the Higgs sector of the strong interaction

    Full text link
    Scalar mesons are a key expression of the strong physics regime of QCD and the role condensates, particularly , play in breaking chiral symmetry. What new insights have been provided by recent experiments on D,DsD, D_s and J/ψJ/\psi decays to light hadrons is discussed. We need to establish whether all the claimed scalars σ\sigma, κ\kappa, f0(1370)f_0(1370), etc., really exist and with what parameters before we can meaningfully speculate further about which is transiently qˉq{\bar q}q, qqˉqq{\bar{qq}} qq, multi-meson molecule or largely glue.Comment: 10 pages, 4 figures. Invited talk at the International Conference on QCD and Hadronic Physics, Beijing, June 2005. A shortened version will appear in the Proceeding
    • …
    corecore