50,358 research outputs found

    Universality class of the restricted solid-on-solid model with hopping

    Full text link
    We study the restricted solid-on-solid (RSOS) model with finite hopping distance l0l_{0}, using both analytical and numerical methods. Analytically, we use the hard-core bosonic field theory developed by the authors [Phys. Rev. E {\bf 62}, 7642 (2000)] and derive the Villain-Lai-Das Sarma (VLD) equation for the l0=l_{0}=\infty case which corresponds to the conserved RSOS (CRSOS) model and the Kardar-Parisi-Zhang (KPZ) equation for all finite values of l0l_{0}. Consequently, we find that the CRSOS model belongs to the VLD universality class and the RSOS models with any finite hopping distance belong to the KPZ universality class. There is no phase transition at a certain finite hopping distance contrary to the previous result. We confirm the analytic results using the Monte Carlo simulations for several values of the finite hopping distance.Comment: 13 pages, 3 figure

    Anisotropy in magnetic and transport properties of Fe1-xCoxSb2

    Full text link
    Anisotropic magnetic and electronic transport measurements were carried out on large single crystals of Fe1-xCoxSb2 (0<= x <=1). The semiconducting state of FeSb2 evolves into metallic and weakly ferromagnetic by substitution of Fe with Co for x<0.5. Further doping induces structural transformation from orthorhombic Pnnm structure of FeSb2 to monoclinic P21/c structure of CoSb2 where semiconducting and diamagnetic ground state is restored again. Large magnetoresistance and anisotropy in electronic transport were observed.Comment: 7 pages, 6 figure

    Derivation of continuum stochastic equations for discrete growth models

    Full text link
    We present a formalism to derive the stochastic differential equations (SDEs) for several solid-on-solid growth models. Our formalism begins with a mapping of the microscopic dynamics of growth models onto the particle systems with reactions and diffusion. We then write the master equations for these corresponding particle systems and find the SDEs for the particle densities. Finally, by connecting the particle densities with the growth heights, we derive the SDEs for the height variables. Applying this formalism to discrete growth models, we find the Edwards-Wilkinson equation for the symmetric body-centered solid-on-solid (BCSOS) model, the Kardar-Parisi-Zhang equation for the asymmetric BCSOS model and the generalized restricted solid-on-solid (RSOS) model, and the Villain--Lai--Das Sarma equation for the conserved RSOS model. In addition to the consistent forms of equations for growth models, we also obtain the coefficients associated with the SDEs.Comment: 5 pages, no figur

    A predictive standard model for heavy electron systems

    Full text link
    We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is ~J^2\rho/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, \rho, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.Comment: 4 pages, 2 figures, submitted to J. Phys.: Conf. Ser. for SCES 201

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Pure spinor computation towards open string three-loop

    Full text link
    Using the recent results in the pure spinor formulation, we lay out a ground-work towards the full momentum space amplitudes of open superstrings at three-loop. After briefly reviewing the one-loop amplitude, we directly work out the two-loop and reproduce the result that was obtained by a symmetry argument. For the three-loop, first we use the two-loop regulator as a warm-up exercise. The result vanishes. We then employ the regulator that has been recently proposed by Aisaka and Berkovits (AB). It is noted that the terms in higher power in 1λλˉ\frac{1}{\lambda\bar{\lambda}} that render the two-loop regulator disqualified for the three-loop do not contribute. This with a few other indications suggests a possibility that the AB regulator might also lead to a vanishing result. Nevertheless, we argue that it is possible to acquire the three-loop amplitude, and present a result that we anticipate to be the three-loop amplitude.Comment: 41 pages, latex, cosmetic change

    Momentum-Resolved Electronic Structure of the High-TcT_{c} Superconductor Parent Compound BaBiO3_{3}

    Full text link
    We investigate the band structure of BaBiO3_{3}, an insulating parent compound of doped high-TcT_{c} superconductors, using \emph{in situ} angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO6_{6} breathing distortions. Though the distortions are often thought to coincide with Bi3+^{3+}/Bi5+^{5+} charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6s6s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2p2p orbitals.Comment: minor changes to text and other figures; includes link to online Supplemental Material; accepted to Phys. Rev. Let
    corecore