5,518 research outputs found
Sound speed of a Bose-Einstein condensate in an optical lattice
The speed of sound of a Bose-Einstein condensate in an optical lattice is
studied both analytically and numerically in all three dimensions. Our
investigation shows that the sound speed depends strongly on the strength of
the lattice. In the one-dimensional case, the speed of sound falls
monotonically with increasing lattice strength. The dependence on lattice
strength becomes much richer in two and three dimensions. In the
two-dimensional case, when the interaction is weak, the sound speed first
increases then decreases as the lattice strength increases. For the three
dimensional lattice, the sound speed can even oscillate with the lattice
strength. These rich behaviors can be understood in terms of compressibility
and effective mass. Our analytical results at the limit of weak lattices also
offer an interesting perspective to the understanding: they show the lattice
component perpendicular to the sound propagation increases the sound speed
while the lattice components parallel to the propagation decreases the sound
speed. The various dependence of the sound speed on the lattice strength is the
result of this competition.Comment: 15pages 6 figure
Coexistence of multi-photon processes and longitudinal couplings in superconducting flux qubits
In contrast to natural atoms, the potential energies for superconducting flux
qubit (SFQ) circuits can be artificially controlled. When the inversion
symmetry of the potential energy is broken, we find that the multi-photon
processes can coexist in the multi-level SFQ circuits. Moreover, there are not
only transverse but also longitudinal couplings between the external magnetic
fields and the SFQs when the inversion symmetry of potential energy is broken.
The longitudinal coupling would induce some new phenomena in the SFQs. Here we
will show how the longitudinal coupling can result in the coexistence of
multi-photon processes in a two-level system formed by a SFQ circuit. We also
show that the SFQs can become transparent to the transverse coupling fields
when the longitudinal coupling fields satisfy the certain conditions. We
further show that the quantum Zeno effect can also be induced by the
longitudinal coupling in the SFQs. Finally we clarify why the longitudinal
coupling can induce coexistence and disappearance of single- and two-photon
processes for a driven SFQ, which is coupled to a single-mode quantized field.Comment: 11 pages, 6 figure
Hole Doping Dependence of the Coherence Length in Thin Films
By measuring the field and temperature dependence of magnetization on
systematically doped thin films, the critical current
density and the collective pinning energy are determined in
single vortex creep regime. Together with the published data of superfluid
density, condensation energy and anisotropy, for the first time we derive the
doping dependence of the coherence length or vortex core size in wide doping
regime directly from the low temperature data. It is found that the coherence
length drops in the underdoped region and increases in the overdoped side with
the increase of hole concentration. The result in underdoped region clearly
deviates from what expected by the pre-formed pairing model if one simply
associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure
Object Picture of Quasinormal Modes for Stringy Black Holes
We study the quasinormal modes (QNMs) for stringy black holes. By using
numerical calculation, the relations between the QNMs and the parameters of
black holes are minutely shown. For (1+1)-dimensional stringy black hole, the
real part of the quasinormal frequency increases and the imaginary part of the
quasinormal frequency decreases as the mass of the black hole increases.
Furthermore, the dependence of the QNMs on the charge of the black hole and the
flatness parameter is also illustrated. For (1+3)-dimensional stringy black
hole, increasing either the event horizon or the multipole index, the real part
of the quasinormal frequency decreases. The imaginary part of the quasinormal
frequency increases no matter whether the event horizon is increased or the
multipole index is decreased.Comment: 4 pages, 5 figure
Anomalies of upper critical field in the spinel superconductor LiTiO
High-field electrical transport and point-contact tunneling spectroscopy were
used to investigate superconducting properties of the unique spinel oxide,
LiTiO films with various oxygen content. We find that the
upper critical field gradually increases as more oxygen
impurities are brought into the samples by carefully tuning the deposition
atmosphere. It is striking that although the superconducting transition
temperature and energy gap are almost unchanged, an astonishing isotropic
up to 26 Tesla is observed in oxygen-rich sample, which
is doubled compared to the anoxic sample and breaks the Pauli limit. Such
anomalies of were rarely reported in other three dimensional
superconductors. Combined with all the anomalies, three dimensional spin-orbit
interaction induced by tiny oxygen impurities is naturally proposed to account
for the remarkable enhancement of in oxygen-rich
LiTiO films. Such mechanism could be general and therefore
provides ideas for optimizing practical superconductors with higher
CCD Astrometric Observations of Phoebe in 2005-2008
International audienceAstrometric observations of Phoebe, the ninth faint satellite of Saturn with vi-sual magnitude of 16.5, were performed during the four successive 2005, 2006, 2007 and 2008 oppositions. A very important amount of 1173 new observed positions of Phoebe, representing more than 50 percent of the observational data available now, were obtained during 30 nights of observation involving six missions, by using three different telescopes. The comparison of our observed positions with the JPL Phoebe ephemeris shows the high quality of our observations, as they appear to be consistent with this ephemeris within only about 50 mas
Enhanced Orbital Degeneracy in Momentum Space for LaOFeAs
The Fermi surfaces (FS) of LaOFeAs (in =0 plane) consist of two
hole-type circles around point, which do not touch each other, and two
electron-type co-centered ellipses around M point, which are degenerate along
the M-X line. By first-principles calculations, here we show that additional
degeneracy exists for the two electron-type FS, and the crucial role of
F-doping and pressure is to enhance this orbital degeneracy. It is suggested
that the inter-orbital fluctuation is the key point to understand the
unconventional superconductivity in these materials.Comment: 4 pages, 5 figure
Disaccharide combinations and the expression of enolase3 and plasma membrane Ca2+ ATPase isoform in sturgeon sperm cryopreservation
ContentsAcipenser sinensis and Acipenser dabryanus are critically endangered species, so germplasm conservation via cryopreservation of sperm is necessary. Disaccharides can act as membrane-impermeable cryoprotectants, and enolase3 (ENO3) and plasma membrane Ca2+ ATPase isoform (PMCA2) are proteins associated with sperm quality. We considered seven characteristics of sperm quality in cultured brood stock from A.sinensis and A.dabryanus. We tested use of sucrose or trehalose alone and in combination at different concentrations for cryopreservation of A.dabryanus sperm. A low concentration of sucrose plus trehalose (S15T15) was optimal. Mixing of the extender with sucrose, lactose, or trehalose alone or with pairwise mixtures revealed that a mixture of lactose and trehalose (L15T15) gave the best results for both A.sinensis and A.dabryanus. Enolase3 and PMCA2 expression levels were measured in cryopreserved A.sinensis sperm via Western blotting. Relative ENO3 and PMCA2 expression levels were examined, and the relationship between disaccharide composition, sperm quality and protein expression was explored in A.sinensis. The results showed that relative ENO3 and PMCA2 expression levels were the highest at L15T15 in cryopreserved A.sinensis sperm. There were significant positive correlations between ENO3 expression and percentage membrane integrity, and between PMCA2 expression and sperm motility parameters (percentage of motile sperm, curvilinear velocity, straight-line velocity and average path velocity; p<.05) in cryopreserved A.sinensis sperm. Our results indicate the optimal disaccharide combination and concentrations for cryopreservation of A.sinensis and A.dabryanus sperm and suggest that ENO3 and PMCA2 expression levels could serve as a valuable indicator of sperm quality in A.sinensis.</p
LDA+Gutzwiller Method for Correlated Electron Systems
Combining the density functional theory (DFT) and the Gutzwiller variational
approach, a LDA+Gutzwiller method is developed to treat the correlated electron
systems from {\it ab-initio}. All variational parameters are self-consistently
determined from total energy minimization. The method is computationally
cheaper, yet the quasi-particle spectrum is well described through kinetic
energy renormalization. It can be applied equally to the systems from weakly
correlated metals to strongly correlated insulators. The calculated results for
SrVO, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.Comment: 4 pages, 3 figures, 1 tabl
- …
