176,764 research outputs found

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Effect of spin-orbit interaction on heterojunction band discontinuities

    Get PDF
    The effect of spin-orbit interaction is included in the linear combination of atomic orbitals calculation of heterojunction band discontinuities. It is found that spin-orbit interaction is not negligible when the atomic number of the constituent atoms exceeds about 40. The effect of spin-orbit interaction as well as some interesting observations and their implications are briefly discussed

    Diagnostics of macroscopic quantum states of Bose-Einstein condensate in double-well potential by nonstationary Josephson effect

    Get PDF
    We propose a method of diagnostic of a degenerate ground state of Bose condensate in a double well potential. The method is based on the study of the one-particle coherent tunneling under switching the time-dependent weak Josephson coupling between the wells. We obtain a simple expression that allows to determine the phase of the condensate and the total number of the particles in the condensate from the relative number of the particles in two wells Δn=n1n2\Delta n =n_1-n_2 measured before the Josephson coupling is switched on and after it is switched off. The specifics of the application of the method in the cases of the external and the internal Josephson effect are discussed.Comment: 3 page

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure
    corecore