145,930 research outputs found
High-Order-Mode Soliton Structures in Two-Dimensional Lattices with Defocusing Nonlinearity
While fundamental-mode discrete solitons have been demonstrated with both
self-focusing and defocusing nonlinearity, high-order-mode localized states in
waveguide lattices have been studied thus far only for the self-focusing case.
In this paper, the existence and stability regimes of dipole, quadrupole and
vortex soliton structures in two-dimensional lattices induced with a defocusing
nonlinearity are examined by the theoretical and numerical analysis of a
generic envelope nonlinear lattice model. In particular, we find that the
stability of such high-order-mode solitons is quite different from that with
self-focusing nonlinearity. As a simple example, a dipole (``twisted'') mode
soliton which may be stable in the focusing case becomes unstable in the
defocusing regime. Our results may be relevant to other two-dimensional
defocusing periodic nonlinear systems such as Bose-Einstein condensates with a
positive scattering length trapped in optical lattices.Comment: 14 pages, 10 figure
Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse
Using multi-dimensional particle-in-cell (PIC) simulations we study ion
acceleration from a foil irradiated by a circularly polarized laser pulse at
1022W/cm^2 intensity. When the foil is shaped initially in the transverse
direction to match the laser intensity profile, the center part of the target
can be uniformly accelerated for a longer time compared to a usual flat target.
Target deformation and undesirable plasma heating are effectively suppressed.
The final energy spectrum of the accelerated ion beam is improved dramatically.
Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the
laser energy are observed in multi-dimensional simulations. Radiation damping
effects are also checked in the simulations.Comment: 4 pages, 4 figure
Investigation of the energy dependence of the orbital light curve in LS 5039
LS 5039 is so far the best studied -ray binary system at
multi-wavelength energies. A time resolved study of its spectral energy
distribution (SED) shows that above 1 keV its power output is changing along
its binary orbit as well as being a function of energy. To disentangle the
energy dependence of the power output as a function of orbital phase, we
investigated in detail the orbital light curves as derived with different
telescopes at different energy bands. We analysed the data from all existing
\textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most
up-to-date orbital light curves at hard X-ray energies. In the -ray
band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data
between 30 MeV and 10 GeV in 5 different energy bands. We found that, at
100 MeV and 1 TeV the peak of the -ray emission is
near orbital phase 0.7, while between 100 MeV and 1 GeV it moves
close to orbital phase 1.0 in an orbital anti-clockwise manner. This result
suggests that the transition region in the SED at soft -rays (below a
hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to
the one of 0.0--0.5, when the compact object is "behind" its companion. Another
interesting result is that between 3 and 20 GeV no orbital modulation is found,
although \textit{Fermi}-LAT significantly (18) detects LS 5039.
This is consistent with the fact that at these energies, the contributions to
the overall emission from the inferior conjunction phase region (INFC, orbital
phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC,
orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power
output is again dominant in the INFC region and the flux peak occurs at phase
0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Subdwarf B stars from the common envelope ejection channel
From the canonical binary scenario, the majority of sdBs are produced from
low-mass stars with degenerate cores where helium is ignited in a way of
flashes. Due to numerical difficulties, the models of produced sdBs are
generally constructed from more massive stars with non-degenerate cores,
leaving several uncertainties on the exact characteristics of sdB stars.
Employing MESA, we systematically studied the characteristics of sdBs produced
from the common envelope (CE) ejection channel, and found that the sdB stars
produced from the CE ejection channel appear to form two distinct groups on the
effective temperature-gravity diagram. One group (the flash-mixing model)
almost has no H-rich envelope and crows at the hottest temperature end of the
extremely horizontal branch (EHB), while the other group has significant H-rich
envelope and spreads over the whole canonical EHB region. The key factor for
the dichotomy of the sdB properties is the development of convection during the
first helium flash, which is determined by the interior structure of the star
after the CE ejection. For a given initial stellar mass and a given core mass
at the onset of the CE, if the CE ejection stops early, the star has a
relatively massive H-rich envelope, resulting in a canonical sdB generally. The
fact of only a few short-orbital-period sdB binaries being in the flash-mixing
sdB region and the lack of He-rich sdBs in short-orbital-period binaries
indicate that the flash mixing is not very often in the products of the CE
ejection. A falling back process after the CE ejection, similar to that
happened in nova, is an appropriate way of increasing the envelope mass, then
prevents the flash mixing.Comment: accepted by A&A 12 pages, 11 figure
Heavy Pentaquarks
We construct the spin-flavor wave functions of the possible heavy pentaquarks
containing an anti-charm or anti-bottom quark using various clustered quark
models. Then we estimate the masses and magnetic moments of the or heavy pentaquarks. We emphasize the difference in the
predictions of these models. Future experimental searches at BESIII, CLEOc,
BELLE, and LEP may find these interesting states
- …