19,550 research outputs found
Salvia miltiorrhiza treatment during early reperfusion reduced postischemic myocardial injury in the rat
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37°C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 μL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 μL/min. The SM1 treatment reduced the production of 15-F2t- isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 ± 20, 43 ± 6, and 95 ± 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and post-poned the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F 2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 ± 4, 46 ± 4, and 60 ± 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% ± 2%, 22% ± 2%, and 20% ± 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important. © 2007 NRC.published_or_final_versio
The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies
We study the properties of infrared-selected QSOs (IR QSOs),
optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s).
We compare their properties from the infrared to the optical and examine
various correlations among the black hole mass, accretion rate, star formation
rate and optical and infrared luminosities. We find that the infrared excess in
IR QSOs is mostly in the far infrared, and their infrared spectral indices
suggest that the excess emission is from low temperature dust heated by
starbursts rather than AGNs. The infrared excess is therefore a useful
criterion to separate the relative contributions of starbursts and AGNs. We
further find a tight correlation between the star formation rate and the
accretion rate of central AGNs for IR QSOs. The ratio of the star formation
rate and the accretion rate is about several hundred for IR QSOs, but decreases
with the central black hole mass. This shows that the tight correlation between
the stellar mass and the central black hole mass is preserved in massive
starbursts during violent mergers. We suggest that the higher Eddington ratios
of NLS1s and IR QSOs imply that they are in the early stage of evolution toward
classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap
Spectroscopic Properties of QSOs Selected from Ultraluminous Infrared Galaxy Samples
We performed spectroscopic observations for a large infrared QSO sample with
a total of 25 objects. The sample was compiled from the QDOT redshift survey,
the 1 Jy ULIRGs survey and a sample obtained by a cross-correlation study of
the IRAS Point Source Catalogue with the ROSAT All Sky Survey Catalogue.
Statistical analyses of the optical spectra show that the vast majority of
infrared QSOs have narrow permitted emission lines (with FWHM of Hbeta less
than 4000 km/s) and more than 60% of them are luminous narrow line Seyfert 1
galaxies. Two of the infrared QSOs are also classified as low ionization BAL
QSOs. More than 70% of infrared QSOs are moderately or extremely strong Fe II
emitters. This is the highest percentage of strong Fe II emitters in all
subclasses of QSO/Seyfert 1 samples. We found that the Fe II to Hbeta, line
ratio is significantly correlated with the [OIII]5007 peak and Hbeta blueshift.
Soft X-ray weak infrared QSOs tend to have large blueshifts in permitted
emission lines and significant Fe II48,49 (5100--5400 A) residuals relative to
the Boroson & Green Fe II template. If the blueshifts in permitted lines are
caused by outflows, then they appear to be common in infrared QSOs. As the
infrared-selected QSO sample includes both luminous narrow line Seyfert 1
galaxies and low ionization BAL QSOs, it could be a useful laboratory to
investigate the evolutionary connection among these objects.Comment: 35 pages,14 figures, 4 tables, accepted for publication in A
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit
We investigate the ionization dynamics of Argon atoms irradiated by an
ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum
distribution of the photoelectrons with near-zero-energy. We find a surprising
accumulation in the momentum distribution corresponding to meV energy and a
\textquotedblleft V"-like structure at the slightly larger transverse momenta.
Semiclassical simulations indicate the crucial role of the Coulomb attraction
between the escaping electron and the remaining ion at extremely large
distance. Tracing back classical trajectories, we find the tunneling electrons
born in a certain window of the field phase and transverse velocity are
responsible for the striking accumulation. Our theoretical results are
consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure
Equation of motion for multiqubit entanglement in multiple independent noisy channels
We investigate the possibility and conditions to factorize the entanglement
evolution of a multiqubit system passing through multi-sided noisy channels. By
means of a lower bound of concurrence (LBC) as entanglement measure, we derive
an explicit formula of LBC evolution of the N-qubit generalized
Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels,
based on which two kinds of factorizing conditions for the LBC evolution are
presented. In this case, the time-dependent LBC can be determined by a product
of initial LBC of the system and the LBC evolution of a maximally entangled
GGHZ state under the same multi-sided noisy channels. We analyze the realistic
situations where these two kinds of factorizing conditions can be satisfied. In
addition, we also discuss the dependence of entanglement robustness on the
number of the qubits and that of the noisy channels.Comment: 14 page
- …