20,961 research outputs found

    Shock-induced consolidation and spallation of Cu nanopowders

    Get PDF
    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (∼11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u_i) ranges from 0.2 to 2 km s^(−1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u_i are identified for the onset plasticity at the contact points (0.2 km s^(−1)) and complete void collapse (0.5 km s^(−1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u_i, while the pronounced, grain-wise deformation may contribute as well at high u_i. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (∼10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity

    Parsec-scale jet properties of the gamma-ray quasar 3C 286

    Full text link
    The quasar 3C~286 is one of two compact steep spectrum sources detected by the {\it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the γ\gamma-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of ∼\sim1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of 2.8×1092.8\times 10^{9}~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of −135∘-135^\circ to −115∘-115^\circ. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as 0.013±0.0110.013 \pm 0.011 mas yr−1^{-1} (βapp=0.6±0.5\beta_{\rm app} = 0.6 \pm 0.5), corresponding to a jet speed of about 0.5 c0.5\,c at an inclination angle of 48∘48^\circ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of γ\gamma-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which γ\gamma-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of γ\gamma-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the γ\gamma-ray production mechanism in this source.Comment: 9 pages, 4 figures, accept for publication in MNRA

    Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries

    Get PDF
    We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design

    Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates

    Get PDF
    We show that single component metallic glasses can be synthesized by thermal spray coating of nanodroplets onto an amorphous substrate. We demonstrate this using molecular dynamics simulations of nanodroplets up to 30 nm that the spreading of the nanodroplets during impact on a substrate leads to sufficiently rapid cooling (10^(12)–10^(13) K/s) sustained by the large temperature gradients between the thinned nanodroplets and the bulk substrate. However, even under these conditions, in order to ensure that the glass transition outruns crystal nucleation, it is essential that the substrate be amorphous (eliminating sites for heterogeneous nucleation of crystallization)

    Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation

    Get PDF
    We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112)〈110〉, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e.g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions

    Shock compression and spallation of single crystal tantalum

    Get PDF
    We present molecular dynamics simulations of shock-induced plasticity and spall damage in single crystal Ta described by a recently developed embedded-atom-method (EAM) potential and a volumedependent qEAM potential. We use impact or Hugoniotstat simulations to investigate the Hugoniots, deformation and spallation. Both EAM and qEAM are accurate in predicting, e.g., the Hugoniots and γ - surfaces. Deformation and spall damage are anisotropic for Ta single crystals. Our preliminary results show that twinning is dominant for [100] and [110] shock loading, and dislocation, for [111]. Spallation initiates with void nucleation at defective sites from remnant compressional deformation or tensile plasticity. Spall strength decreases with increasing shock strength, while its rate dependence remains to be explored

    Rapid visual presentation to support geospatial big data processing

    Get PDF
    Given the limited number of human GIS/image analysts at any organization, use of their time and organizational resources is important, especially in light of Big Data application scenarios when organizations may be overwhelmed with vast amounts of geospatial data. The current manuscript is devoted to the description of experimental research outlining the concept of Human-Computer Symbiosis where computers perform tasks, such as classification on a large image dataset, and, in sequence, humans perform analysis with Brain-Computer Interfaces (BCIs) to classify those images that machine learning had difficulty with. The addition of the BCI analysis is to utilize the brain\u27s ability to better answer questions like: Is the object in this image the object being sought? In order to determine feasibility of such a system, a supervised multi-layer convolutional neural network (CNN) was trained to detect the difference between ships\u27 and no ships\u27 from satellite imagery data. A prediction layer was then added to the trained model to output the probability that a given image was within each of those two classifications. If the probabilities were within one standard deviation of the mean of a gaussian distribution centered at 0.5, they would be stored in a separate dataset for Rapid Serial Visual Presentations (RSVP), implemented with PsyhoPy, to a human analyst using a low cost EMOTIV Insight EEG BCI headset. During the RSVP phase, hundreds of images per minute can be sequentially demonstrated. At such a pace, human analysts are not capable of making any conscious decisions about what is in each image; however, the subliminal aha-moment still can be detected by the headset. The discovery of these moments are parsed out by exposition of Event Related Potentials (ERPs), specifically the P300 ERPs. If a P300 ERP is generated for detection of a ship, then the relevant image would be moved to its rightful designation dataset; otherwise, if the image classification is still unclear, it is set aside for another RSVP iteration where the time afforded to the analyst for observation of each image is increased each time. If classification is still uncertain after a respectable amount of RSVP iterations, the images in question would be located within the grid matrix of its larger image scene. The adjacent images to those of interest on the grid would then be added to the presentation to give an analyst more contextual information via the expanded field of view. If classification is still uncertain, one final expansion of the field of view is afforded. Lastly, if somehow the classification of the image is indeterminable, the image is stored in an archive dataset

    The radio structure of 3C 316, a galaxy with double-peaked narrow optical emission lines

    Full text link
    The galaxy 3C\,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e-MERLIN), and the European VLBI Network (EVN) at 5\,GHz have been used to study the radio structure of the source in order to determine the nature of the nuclear components and to determine the presence of radio cores. The e-MERLIN image of 3C 316 reveals a collimated coherent east-west emission structure with a total extent of about 3 kpc. The EVN image shows seven discrete compact knots on an S-shaped line. However, none of these knots could be unambiguously identified as an AGN core. The observations suggest that the majority of the radio structure belongs to a powerful radio AGN, whose physical size and radio spectrum classify it as a compact steep-spectrum source. Given the complex radio structure with radio blobs and knots, the possibility of a kpc-separation dual AGN cannot be excluded if the secondary is either a naked core or radio quiet.Comment: 12 pages, 3 figures, 2 tables. Accepted for publication in the MNRA
    • …
    corecore