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ABSTRACT: 

Given the limited number of human GIS/image analysts at any organization, use of their time and organizational resources is important, 
especially in light of Big Data application scenarios when organizations may be overwhelmed with vast amounts of geospatial data. 
The current manuscript is devoted to the description of experimental research outlining the concept of Human-Computer Symbiosis 
where computers perform tasks, such as classification on a large image dataset, and, in sequence, humans perform analysis with Brain-
Computer Interfaces (BCIs) to classify those images that machine learning had difficulty with. The addition of the BCI analysis is to 
utilize the brain’s ability to better answer questions like: “Is the object in this image the object being sought?” In order to determine 
feasibility of such a system, a supervised multi-layer convolutional neural network (CNN) was trained to detect the difference between 
‘ships’ and ‘no ships’ from satellite imagery data. A prediction layer was then added to the trained model to output the probability that 
a given image was within each of those two classifications. If the probabilities were within one standard deviation of the mean of a 
gaussian distribution centered at 0.5, they would be stored in a separate dataset for Rapid Serial Visual Presentations (RSVP), 
implemented with PsyhoPy, to a human analyst using a low cost EMOTIV “Insight” EEG BCI headset. During the RSVP phase, 
hundreds of images per minute can be sequentially demonstrated. At such a pace, human analysts are not capable of making any 
conscious decisions about what is in each image; however, the subliminal “aha-moment” still can be detected by the headset. The 
discovery of these moments are parsed out by exposition of Event Related Potentials (ERPs), specifically the P300 ERPs. If a P300 
ERP is generated for detection of a ship, then the relevant image would be moved to its rightful designation dataset; otherwise, if the 
image classification is still unclear, it is set aside for another RSVP iteration where the time afforded to the analyst for observation of 
each image is increased each time. If classification is still uncertain after a respectable amount of RSVP iterations, the images in 
question would be located within the grid matrix of its larger image scene. The adjacent images to those of interest on the grid would 
then be added to the presentation to give an analyst more contextual information via the expanded field of view. If classification is still 
uncertain, one final expansion of the field of view is afforded. Lastly, if somehow the classification of the image is indeterminable, the 
image is stored in an archive dataset. 

1. INTRODUCTION 

1.1 Geospatial Big Data and Applications scenarios 
 
Nowadays the rapid development of information technology has 
led to the tremendous growth of data from various geospatial 
sensors which can be defined as the era of big data (Li et al., 
2016). Typical application scenarios of geospatial big data 
include but are not limited to: land use mapping (Joshi et al.,  
2016 ), change detection (Wang et al., 2016) , natural and man-
made disasters monitoring (Cernove et al., 2016). Geospatial Big 
Data are composed of terrestrial geosensors (Reis, 2005), (Nittel 
et al., 2005), social media data (Esmaili et al., 2013), terrestrial 
and airborne LIDAR (Debie et al., 2020),   aerial imagery from 
manned and unmanned (UAS) platforms, satellite Earth 
Observation Systems imagery with various spatial (Li et al., 
2008), temporal (Stellmes et al, 2013), and spectral resolutions 
(Asadzadeh et al.,2016). Most current geospatial toolsets can be 
termed as a “human-in-the-loop” in spite of increased amounts of 
operations that are automated by computer algorithms; therefore, 
research in optimization of the geospatial analysts’ workflow can 
be important for overall productivity increase of geospatial 
systems and toolsets.  
 
1.2 Why human-computer symbiosis? 

Most of the automated detection and identification algorithms for 
objects/phenomena recognition in big data geospatial domains 
compares radiometric and geometric parameters of the 
objects/phenomena against parameters obtained as a result of 
supervised or unsupervised training classification and match 
them against some set of predefined decision rules. 
Unfortunately, the practical usefulness of automated detection 
and identification based on” press-a-button” derived results are 
limited (Feferman et al., 2004), because geospatial imaging data 
are burdened with residual errors and artifacts which have to be 
manually inspected, cleaned, and corrected. These tasks 
complicate large projects that require real-time processing of 
immense amounts of geospatial big data information and require 
a human analysts’ involvement in manual post-processing and 
visual inspection of the automatically derived objects detection 
and identification results.  
This prompted us to consider developing a human-in-the-loop 
semi-automated technology to enable the most efficient 
processing of visual geospatial data. As humans, we perceive 
and process vast amounts of information visually at extremely 
high speed; therefore, it seems reasonable to combine this 
human ability with the speed of computers to build a Human-
Computer Symbiosis (HCS) platform for processing geospatial 
data. This platform can be based on registering the cognitive 
activity of analysts by means of brain electroencephalogram 
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(EEG) and visual attention of an analyst by real-time eye-
tracking.  
While the human brain performs searches and analysis of 
visual data, the analyst’s eyes intuitively scan the scene. Such 
eye movements are driven by and indirectly represent results 
of internal processes of visual searching and matching, 
performed by the whole human visual system. By tracking and 
analysing EEG and eye movements data (Eenwyk et al., 2008) 
we can arrange a “smart” loop, with the computer performing 
the rest of the tasks, where computation and data storage 
predominate. Table 1 shows the relative strengths of brains and 
computers for geospatial image analysis. As can be seen, the 
combination of both would lead to a more complete analysis 
where one would supplement where the other is lacking.  

 
Stage Agent 

General observed 
scenes matching  

brain  

Tuned area matching brain computer 
Disparity evaluation brain computer 
Finding spot 
correspondence 

brain  

Object recognition brain  
Measuring 
(un)matched objects 

brain computer 

Measurement 
registration 

 computer 

Statistics  computer 
Analysis brain computer 

         Table 1. Strengths of humans and computers in geospatial    
image analysis (Gienko and Levin, 2007) 

 
1.3 State-of-the-art: integrating automated and interactive 
geospatial data processing. 
 
An interesting experiment on integrating computer vision and 
brain-computer interfaces is described in (Pohlmeyer et al.,  
2011) and led to the development of the concept cortically-
coupled computer vision (C3Vision) which refers to a particular 
class of brain–computer interface (BCI) meant to combine the 
complementary strengths of computer vision and human vision 
to provide robust image search and retrieval in high throughput 
tasks (Gerson et al.,  2006), (Parra et al., 2008), (Sajda et al.,  
2010). The C3 Vision is aimed to assist users in searching large 
imagery databases. Specifically, Caltech-101 (Fei-Fei et al., 
2004) testing imagery dataset was deployed. Samples of images 
were randomly selected and presented in what’s known as a rapid 
visual serial visual presentation (RSVP). The computer vision 
method deployed for image annotation was selected as a 
transductive annotation graph (TAG) described in (Wang et al., 
2008) and (Wang et al., 2009). That is a semi-supervised learning 
technique which uses a small subset of labelled images. 
ActiveTwo Biosemi EEG with 64 electrodes was used for the 
recording and determination of human-interest rate to the RSVP 
data. C3Vision system enabled interaction between the human 
and computer vision by means of cortical interface. Its 
architecture was useful in reorganizing imagery in large diverse 
data sets. However, the challenge of practical use of the cortical 
interface-based system in geoinformatics is associated with: 

1. Research on how RSVP will be efficient for complex 
(aerial, satellite) imagery labelling  

2. How easy-to-use EEG devices that do not require human 
analyst scalp soaking can be deployed with significantly 
reduced number of EEG electrodes. 
 

1. RESEARCH EXPERIMENTS DESCRIPTION 

1.1 Experimental Scenarios 

To implement cortically-coupled empowered geospatial big data 
application scenarios we performed research experiments to 
demonstrate a feasibility of the iterative ERP solution. The major 
stages of that solution are: 

 
1. Train a supervised machine learning model to classify 

images to predict the probability that an image is within 
the bounds of a classification 

2. Move images that have been misclassified or those 
whose classification is uncertain within the first 
standard deviation of a gaussian distribution centred at 
0.5 to a separate dataset and present them to an analyst 
via RSVP where t0=0; dt=5Hz; tmax=0.5; tmin=0.25 te=t0 

 

 
 
Figure 1. Geospatial Imaging - Event Related Potential Engine 
Functional Workflow 
 

3. Move images to proper dataset when ERP analysis 
detects P300 indicators. 

4. Iterate over remaining images with te = te + dt  
5. Mark and remove image with positive P300 indicators 

from presentation dataset 
6. Repeat iteration until te = tmax 
7. Widen field of view to add contextual information and 

present them to the analyst. Repeat field of view 
expansion once more if necessary. 

8. Archive any unclassifiable images. 
 

  As a result, we intend to check the feasibility of the Geospatial 
Imaging ERP engine (GI-ERP) as it is depicted on Figure 1. 
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1.2 Experimental Data 

The experiment was conducted using a Kaggle dataset composed 
of labelled satellite data (Planet Team, 2017). The dataset 
included 1000 images of ships and 3000 images without ships. 
Figure 2 shows a subset of the training data with labels. 
 

 
 

Figure 2. Sample set of image training images and labels 
 
As it can be seen from Figure 2, there are errors in the labelled 
data as gathered directly from Kaggle. For our purposes, the data 
was too large to manually relabel the data in the time given, see 
the future work section for a potential solution that takes 
advantage of the application of BCI. As for the results, the 
labeling errors exacerbate type I and type II errors; however, the 
foundation of the model fits within supervised learning norms. 
 
1.3 Creating the Model and Results Obtained 

The model was created using well developed convolutional 
neural network training methods. The activation function used 
during training was an unmodified ReLU that sets all negative 
values to zero and keeps any positive values which performs well 
on image data (Glorot et al.,  2010) (Nair and Hinton,  2010). The 
model also used “Adam” optimization for its computational 
efficiency and low requirements for tuning (Kingma et al.,  
2014). For the prediction layer a modified ReLu activation 
function was added to scale the positive values to fit within the 
range of 0 to 1. The resulting values were attributed with the 
confidence the model had with its prediction. An example of the 
resulting predictions and confidence can be seen in Figure 3. The 
same logic that is used to create the red text for the 
“misclassified” data is what is to be used to create a separate 
dataset to be presented in RSVP for a fully connected system. In 
order to determine if an image should then be forwarded to an 
analyst for RSVP, the confidence value would need to fall within 
the first standard deviation of the normal distribution shown in 
Figure 4. 
 

 
 

Figure 3: Sample set of image prediction on a validation image 
set 

  
This method utilizes the properties of the modified ReLU 
activation function and the resulting distribution of confidence 
levels to forward those images with the lowest confidence for 
extra analysis. Such a method reduces the need for a human 
analyst input to better make use of their time. 
 

 
 

Figure 4. Modified ReLu activation function (y=max(0,x)  
where 0 ≦ x ≦ 1) and a normal distribution centered at 0.5 

 
 
1.4 Rapid Serial Visual Presentation and ERP Analysis 

The cost-efficient EMOTIV insight (Emotiv) EEG device for GI 
ERP was used for recordings. Custom PsyhoPy script was 
developed to perform rapid serial visual presentations of the 
imagery to the subjects involved in the experiment. 
Figure 5 below shows the PsychoPy user interface of the main 
RSVP loop. The resulting Python script that executed the 
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presentation was automatically generated from this interface. The 
analyst was presented with an initial image, “Target Acquisition” 
to solidify what they were to search for. They were then presented 
with a message preparing them for the RSVP. The images were 
then looped through during “Test Trial” and when all of the 
images were presented, the exit message was displayed 
prompting them to seek the researchers to end the task. 
 

 

 
 

Figure 5. Graphic User Interface Depiction of RSVP Loop 
 

 
1.5 Probabilistic mathematical approach for the 
estimation of GI ERP extracted objects 
 
Any information extracted from geospatial big data may have 
inaccuracies associated with the nature of this data. This 
inaccuracy may follow from the errors in machine learning 
algorithms and human interpretation due to complexity of sensors 
models and variety of conditions. In case of imaging information 
such inaccuracy may follow from the known errors in image 
features segmentation (which is known as “ill-posed problem” 
(Marroquin et.al., 1987) and matching those features against 
geospatial features presented in a pre-existing database of the 
area. For the mathematical abstraction let’s assume that we will 
compare probability of the object of interest found event or image 
feature towards a simplistic binary model of “truth” and “false”. 
In this case of binary simplification, the GI ERP operates vectors 
�⃗�𝑎 and 𝑏𝑏�⃗  representing a current geospatial object (GO) and 
database vector (DBV), respectively.  When 𝑏𝑏�⃗  represents a full 
data stream, and �⃗�𝑎 represents only a particular view/state of a 
particular object, a number of  �⃗�𝑎 permutations with N-number of 
symbols (vector components), and M-number of “ones,” is 
 

m)!(NN!

N!N
mmNW

−
== 





    )(

(1) 
  ,  
where m!=m(m-1)(m-2). 
 
Each �⃗�𝑎 - permutation represents one specific object’s (for 
example - airplane); typically, we have: 
 

𝐿𝐿 ≅ 4𝑁𝑁 
    .  
In this case, the 𝑏𝑏�⃗    -database stores all of the object views, which 
are compared to a specific GO view, �⃗�𝑎 , obtained geospatial big 
data surveillance, such as: 
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 Agreement 

(Marked) 
 
We can see that in any case of agreement (in the brackets), i.e., 
“1” with “1,” or “0” with “0,” the Boolean sum is: 
 

 1+1 = 0,      0+0 = 0  .  
Whereas the case of disagreement, we have: 
 
 1+0 = 1,      0+1 = 1  .  
 
It could be shown for equal probabilities for “1” and “0” (equal 
to 0.5) that: 
 

1 2 
1

=∑
−

−

=
 

m)!(Nm!
N! NN

m     , 
 
or 

∑
−=

= N

m

N
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1

  2
   , (2) 

 
which represents the number of all possible binary permutations.  
Typically, for example, for a face-front view of a airplane, we 
have: 
 

80  ≅N     , 
 
and a typical situation is almost balanced, i.e., 

2
  
N

m ≅
 

    .  
For an exact balanced case we can calculate the number of 
permutations as: 
 

 

WN
N

2( ) =  
N!

N
2( )! N

2( )!    .  
 
For N=80, we have: 
 

    . 
W80(40) =

(80)!

(40)!(40)!
= 1053

  
 
The False Negative Rate (FNR) can be calculated from the 
binomial distribution approximated by Gaussian (normal) 
distribution in the following asymptotic form (Mesgeneu et al.,   
1976): 
 

PN (y0 ) ~
1
2π

e− yo
2

2

y0  
 
    ,  
which is illustrated in Figure 6. 
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Figure 6. Illustration of the FNR for Gaussian distribution. 
 
The FNR determines with what probability we can guess the right 
distribution, with variance: 

δ 2 = Npq =
N
4  

    
and mean value: 
 

m = qN =
N
2    . 

 
In GI ERP context, we assume to use well-known automated 
target recognition (ATR) so called Figures of Merit (FOMs) that 
are based on Signal Detection Theory (SDT) (Macmillan,2002); 
where conditional probabilities are applies (see, Table of Figure 
6); p(SIS), p(SIN), p(NIS), p(NIN), translated as probability of: 
hit, False-Alarm-Rate (FAR), miss, and correct-rejection, 
respectively.  In this formation, the conditional probability 
p(AIB) means; if event (B) is present, then event (A) is detected.  
For example, p(NIS) is probability of signal/target-detection 
assuming that only noise-is-present.  Thus, p(NIS) also means the 
probability of False-alarm, or False-Alarm-Rate (FAR).  We 
should observe that p(d/I) is similar to p(SIS).  Yet p(SIS) is 
closer to our ERP scenario, when, on the basis of single, or few 
images, we need to evaluate the probability of target recognition 
(hit). 
 

HIT FAR 
p(SIS) p(SIN) 
MISS CORRECT REJECTION 
p(nIS) p(nIN) 

Table 2: Conditional probability according to the SDT model. 
 
Based on this modelling, we here assume to establish Classes of 
Equivalence (COEs), as shown in Figure 6.  In more general than 
in (Thom,1969) case, in addition to probability of hit, miss, FAR, 
and correct rejection, we here also may compute cross-table 
probabilities (CTP).  During GI ERP development we investigate 
and evaluate the COE-concept for specific classes of equivalence 
related to emergency situations response application scenarios, 
for example such as:  Ship (A), No Ship (B). 
 
 

Present 
 
 

DETECTE
D 

 
A 

 
B 

Ship No 
Ship 

 
A 

p(AIA) p(AIB) 

HIT CTP 

 
B 

p(BIA) p(BIB) 

CTP HIT 
Table 3. Conditional probabilities, according to the CI ERP SDT 
model, generalized into two classes of equivalence geospatial 
objects ships and no ships 
 
In addition to a traditional simplified signal/noise model 
(Macmillan, 2002), where the conditional probabilities mean; hit, 
miss, FAR, and Correct rejection, we will estimate also Cross-
Talk-Probability (CTP). 
 

2. EEG EXPERIMENT RESULTS 

Imagery datasets as described in section 2.5 were demonstrated 
to one subject (due to covid-19 quarantine we were not able to 
involve more human subjects). We recorded experiments on both 
Emotiv Epoch (14 electrodes) and Insight (6 electrodes) EEG 
headsets. Grand average ERP to Aha on all sensors are depicted 
on Figure 7 for both devices. 
 
 

A  

 
B 

 
Figure 7. Grand average signals for Emotiv Epoc(A) and 
Insight(B) recording ERP experiment. 
 
It is visible from Figure 7 that electrodes O1 and O2 in Epoc 
device and Pz on Insight are responsive to the signal (Aha-
moment). It follows well with a neuroscience theory that 
subliminal aha-moment can be detected in the hypothalamus area 
of the brain.  
  
The graphical representation for the result of the experimental 
objects ERP recordings for the ships/no ships trial are given on 
Figure 8. We defined bin number 0 for the no-ship images and 
bin number 1 for the ship images.  Based on the result from ERP 
processing, we captured more activities on the left lower back of 
the brain during 300ms after the presentation of ships during 
RSVP experiment rather than other parts of the brain.  
 

 
Bin 1 (Ships) 

 
Bin 0 (No Ships) 

 
Figure 8. Topographical scalp maps for BINS. 

 
EEG data was also analysed based on ERP “Aha” - minus “No-
aha” differencing waves (Mai et al., 2004). P300 (van Dinteren 
et al., 2014) was elicited for both data subsets with objects 
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(Aha) and without objects (non-Aha) images. Results of 
computing P300 differences and potentials are listed below in 
Tables 4 and 5. 
 

Trial P300(Ship) P300(No ship) Intervals 

20 16 4 2s 

50 42 8 5s 

80 64 16 10s 

Table-4. P300 aha-moment potential computation results for 
Ships dataset. 
 

Trial/Potential(V) P7 O1 O2 

Ship ~5.5 ~6.1 ~5.8 

No Ship ~1.2 ~0 ~2 

Table-5. Average P300 Peak Amplitude for our electrodes 
(P7,O1,O2)  
 
Experimental results prove our concept feasibility. 
 

3. CONCLUSIONS AND FUTURE RESEARCH 

Preliminary experimental results indicate a feasibility of the 
human computer symbiosis within the big geospatial data 
domain. Our future research will be devoted to increasing 
accuracy and minimizing processing and analysis time for 
obtaining results, including further software and algorithm 
optimizations. 
 
For improving the labelled dataset more quickly than traditional 
methods, a form of Interactively Procedural Image Serial 
Presentation can be used where interaction with the presentation 
via button presses cause the next image to be shown. This 
methodology can be used to show an analyst each image/label 
pair. When an analyst sees the image in Figure 8, for instance, 
they can press a button to inform the system that the image was 
mislabelled which can then be programmatically set to correct the 
label by moving the training image to the proper directory. This 
method would be faster than an analyst opening up every image 
in a poorly labelled dataset and manually moving the image files 
to the proper classification directory.  
 
If there is uncertainty from the analyst during the RSVP, as 
automatically detected by EEG, the image that caused the 
uncertainty will be stored in a separate dataset. 
 

 

 
Figure 9. Sample image of mislabelled data 

 

This new dataset will then be used to locate the image within a 
larger context, such as the scene in Figure 10; however, the entire 
scene will not be loaded as that is computationally inefficient. 
Instead, the images in question will be used to locate their 
position within the larger scene via their coordinates. Once the 
position is determined, the field of view is increased around the 
original image by only gathering the eight adjacent images 
around it, Figure 11 B. If certainty still doesn't increase beyond a 
chosen threshold, the field of view will be increased once more 
Figure 11 C. Finally, if the analyst still cannot be certain of what 
is in the original image, it will be stored in a dataset with other 
undeterminable images for archiving.   
 

 
 

Figure 10. Sample image of larger scene 
 

A 

 
Original Training Image Example 

B 

 
First Expanded Field of View 

C 
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Second Expanded Field of View 

 
Figure 11. Example of expanding field of view for context 

clarification 
 

To further enhance outcomes, we are planning to integrate eye 
tracking technology for the analysis of zones on imagery which 
tracks visual attention of the human analyst and approve machine 
learning technology by addition of rules in form of decision trees. 
Specifically, anticipated workflow ERP Extract is depicted in 
Figure 12. 
 

 

 
Figure 12. ERP - Visual attenuation Extraction Workflow 
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