34 research outputs found

    Serum markers in interstitial pneumonia with and without Pneumocystis jirovecii colonization: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic respiratory disease, <it>Pneumocystis jirovecii (P. jirovecii) </it>colonization is observed, and may influence disease progression and systemic inflammation. <it>Pneumocystis </it>pneumonia causes interstitial changes, so making a diagnosis of PCP in patients who have interstitial pneumonia (IP) with <it>P. jirovecii </it>colonization is sometimes difficult based on radiography.</p> <p>Methods</p> <p>This study investigated the prevalence of <it>P. jirovecii </it>colonization in IP patients and assessed pulmonary injury due to <it>P. jirovecii </it>colonization by measurement of serum markers (KL-6, SP-A, SP-D, and (1→3) β-D-glucan (β-D-glucan)) and the peripheral lymphocyte counts, prospectively. A total of 75 patients with idiopathic pulmonary fibrosis (n = 29), collagen vascular-related interstitial pneumonia (n = 19), chronic bronchitis or pneumonia (n = 20), and <it>Pneumocystis </it>pneumonia (n = 7) were enrolled in this prospective study. <it>P. jirovecii </it>DNA was detected in sputum samples, while serum markers and the lymphocyte count were measured in the peripheral blood.</p> <p>Results</p> <p>IP patients (idiopathic pulmonary fibrosis and collagen vascular-related IP) who received oral corticosteroids had a high prevalence of <it>P. jirovecii </it>colonization (23.3%). In IP patients, oral corticosteroid therapy was a significant risk factor for <it>P. jirovecii </it>colonization (<it>P </it>< 0.05). Serum markers did not show differences between IP patients with and without <it>P. jirovecii </it>colonization. The β-D-glucan level and lymphocyte count differed between patients with <it>Pneumocystis </it>pneumonia or <it>P. jirovecii </it>colonization.</p> <p>Conclusion</p> <p>Serum levels of KL-6, SP-A, SP-D, and β-D-glucan were not useful for detecting <it>P. jirovecii </it>colonization in IP patients. However, the serum β-D-glucan level and lymphocyte count were useful for distinguishing <it>P. jirovecii </it>colonization from <it>pneumocystis </it>pneumonia in IP patients.</p

    Identification of Key Processes that Control Tumor Necrosis Factor Availability in a Tuberculosis Granuloma

    Get PDF
    Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-α (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy

    Surfactant protein-D and pulmonary host defense

    Get PDF
    Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases
    corecore