59 research outputs found

    Magnetoacoustics of the Low-Dimensional Quantum Antiferromagnet Cs2CuCl4 with Spin Frustration

    Get PDF
    We report on results of sound-velocity and sound-attenuation measurements in the triangular-lattice spin-1/2 antiferromagnet Cs₂CuCl₄ (T<sub>N</sub> = 0.6 K), in external magnetic fields up to 14 T, applied along the <em>b</em> axis, and at temperatures down to 300 mK. The results are analyzed with a quasi-two-dimensional hard-core boson theory based on exchange-striction coupling. There is a good qualitative agreement between theoretical and experimental results.Citation: Sytcheva, A. et al. (2010). 'Magnetoacoustics of the low-dimensional quantum antiferromagnet Cs₂CuCl₄', Journal of Low Temperature Physics, 159(1-2), 109-113. [Available at http://www.springer.com/materials/journal/10909]. © The Authors 2010. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any non-commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.

    Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4

    Full text link
    We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J'/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields

    The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

    Full text link
    Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published in PRL, e-mail comments to [email protected]

    Bose-Einstein Condensation of Magnons in Cs2CuCl4

    Full text link
    We report on results of specific heat measurements on single crystals of the frustrated quasi-2D spin-1/2 antiferromagnet Cs_2CuCl_4 (T_N=0.595 K) in external magnetic fields B30 mK. Decreasing B from high fields leads to the closure of the field-induced gap in the magnon spectrum at a critical field B_c = 8.51 T and a magnetic phase transition is clearly seen below B_c. In the vicinity to B_c, the phase transition boundary is well described by the power-law T_c(B)\propto (B_c-B)^{1/\phi} with the measured critical exponent \phi\simeq 1.5. These findings are interpreted as a Bose-Einstein condensation of magnons.Comment: 5 pages, 4 figures, experiment and theor

    Order to disorder transition in the XY-like quantum magnet Cs2CoCl4 induced by noncommuting applied fields

    Full text link
    We explore the effects of noncommuting applied fields on the ground-state ordering of the quasi-one-dimensional spin-1/2 XY-like antiferromagnet Cs2CoCl4 using single-crystal neutron diffraction. In zero field interchain couplings cause long-range order below T_N=217(5) mK with chains ordered antiferromagnetically along their length and moments confined to the (b,c) plane. Magnetic fields applied at an angle to the XY planes are found to initially stabilize the order by promoting a spin-flop phase with an increased perpendicular antiferromagnetic moment. In higher fields the antiferromagnetic order becomes unstable and a transition occurs to a phase with no long-range order in the (b,c) plane, proposed to be a spin liquid phase that arises when the quantum fluctuations induced by the noncommuting field become strong enough to overcome ordering tendencies. Magnetization measurements confirm that saturation occurs at much higher fields and that the proposed spin-liquid state exists in the region 2.10 < H_SL < 2.52 T || a. The observed phase diagram is discussed in terms of known results on XY-like chains in coexisting longitudinal and transverse fields.Comment: revtex, 14 figures, 2 tables, to appear in Phys. Rev.

    Investigating the level of signal-to-noise ratio performance of a quadrature head coil in MRI

    No full text
    The following study sought to investigate the level of SNR performance obtainable from a particular MR system (1.5 T GE Signa Horizon™) using the system's quadrature head coil only. The method used for identifying the level of SNR performance of the particular system's quadrature head coil was the same method employed by MagNET (the subdivision of Medical Devices Agency which is responsible for MR technology) in order to produce the official evaluation reports for all MR systems currently available. The SNR test method is based on the National Electrical Manufacturers Association (NEMA) standard for SNR measurements. Therefore, a comparison of the results from this study with the results available in the MDA evaluation report for this particular MR system would ultimately reveal the true SNR performance at the time of testing. SNR measurements in all three imaging planes were obtained and despite the insignificant deviation in the axial plane which was 2.9%, the SNR performance in the sagittal and coronal planes was found to be below the expected, and were 15.2% and 11.6% respectively. This deviation can be related to a number of factors which will be presented. © Greenwich Medical Media Ltd. 2004
    • …
    corecore