34,579 research outputs found

    Thermal effects on lattice strain in hcp Fe under pressure

    Full text link
    We compute the c/a lattice strain versus temperature for nonmagnetic hcp iron at high pressures using both first-principles linear response quasiharmonic calculations based on the full potential linear-muffin-tin-orbital (LMTO) method and the particle-in-cell (PIC) model for the vibrational partition function using a tight-binding total-energy method. The tight-binding model shows excellent agreement with the all-electron LMTO method. When hcp structure is stable, the calculated geometric mean frequency and Helmholtz free energy of hcp Fe from PIC and linear response lattice dynamics agree very well, as does the axial ratio as a function of temperature and pressure. On-site anharmonicity proves to be small up to the melting temperature, and PIC gives a good estimate of its sign and magnitude. At low pressures, hcp Fe becomes dynamically unstable at large c/a ratios, and the PIC model might fail where the structure approaches lattice instability. The PIC approximation describes well the vibrational behavior away from the instability, and thus is a reasonable approach to compute high temperature properties of materials. Our results show significant differences from earlier PIC studies, which gave much larger axial ratio increases with increasing temperature, or reported large differences between PIC and lattice dynamics results.Comment: 9 figure

    Excitation spectrum and critical exponents of a one-dimensional integrable model of fermions with correlated hopping

    Full text link
    We investigate the excitation spectrum of a model of NN colour fermions with correlated hopping which can be solved by a nested Bethe ansatz. The gapless excitations of particle-hole type are calculated as well as the spin-wave like excitations which have a gap. Using general predictions of conformal field theory the long distance behaviour of some groundstate correlation functions are derived from a finite-size analysis of the gapless excitations. From the algebraic decay we show that for increasing particle density the correlation of so-called NN-multiplets of particles dominates over the density-density correlation. This indicates the presence of bound complexes of these NN-multiplets. This picture is also supported by the calculation of the effective mass of charge carriers.Comment: 15 pages, 3 PostScript figures appende

    Non-unique factorization of polynomials over residue class rings of the integers

    Full text link
    We investigate non-unique factorization of polynomials in Z_{p^n}[x] into irreducibles. As a Noetherian ring whose zero-divisors are contained in the Jacobson radical, Z_{p^n}[x] is atomic. We reduce the question of factoring arbitrary non-zero polynomials into irreducibles to the problem of factoring monic polynomials into monic irreducibles. The multiplicative monoid of monic polynomials of Z_{p^n}[x] is a direct sum of monoids corresponding to irreducible polynomials in Z_p[x], and we show that each of these monoids has infinite elasticity. Moreover, for every positive integer m, there exists in each of these monoids a product of 2 irreducibles that can also be represented as a product of m irreducibles.Comment: 11 page

    Soybean harvest aids

    Get PDF
    "Soybean harvest can be filled with problems. Weeds, particularly green weeds, *can slow the speed of harvest, *cause combine problems, *result in excessive combining losses, *result in excessive combining losses, *results in docking for moisture and quality when sold, or *create problems if soybeans are stored."--First page.Z.R. Helsel and L.E. Anderson (Agronomy Department, College of Agriculture)New 9/84/7

    Scale-invariance in gravity and implications for the cosmological constant

    Full text link
    Recently a scale invariant theory of gravity was constructed by imposing a conformal symmetry on general relativity. The imposition of this symmetry changed the configuration space from superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms - to conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. However, despite numerous attractive features, the theory suffers from at least one major problem: the volume of the universe is no longer a dynamical variable. In attempting to resolve this problem a new theory is found which has several surprising and atractive features from both quantisation and cosmological perspectives. Furthermore, it is an extremely restrictive theory and thus may provide testable predictions quickly and easily. One particularly interesting feature of the theory is the resolution of the cosmological constant problem.Comment: Replaced with final version: minor changes to text; references adde
    corecore