375 research outputs found

    Theory of Spin Fluctuation-Induced Superconductivity Based on a d-p Model. II. -Superconducting State-

    Full text link
    The superconducting state of a two-dimensional d-p model is studied from the spin fluctuation point of view by using a strong coupling theory. The fluctuation exchange (FLEX) approximatoin is employed to calculate the spin fluctuations and the superconducting gap functions self-consistently in the optimal- and over-doped regions of hole concentration. The gap function has a symmetry of d_{x^2 - y^2} type and develops below the transition temperature T_c more rapidly than in the BCS model. Its saturation value at the maximum is about 10 T_c. When the spin fluctuation-induced superconductivity is well stabilized at low temperatures in the optimal regime, the imaginary part of the antiferromagnetic spin susceptibility shows a very sharp resonance peak reminiscent of the 41 meV peak observed in the neutron scattering experiment on YBCO. The one-particle spectral density around k=(pi,0) shows sharp quasi-particle peaks followed by dip and hump structures bearing resemblance to the features observed in the angle-resolved photoemission experiment. With increasing doping concentration these features gradually disappear.Comment: 13 pages(LaTeX), 20 eps figure

    The Hybrid BCI

    Get PDF
    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system

    Effects of Electronic Correlations on the Thermoelectric Power of the Cuprates

    Full text link
    We show that important anomalous features of the normal-state thermoelectric power S of high-Tc materials can be understood as being caused by doping dependent short-range antiferromagnetic correlations. The theory is based on the fluctuation-exchange approximation applied to Hubbard model in the framework of the Kubo formalism. Firstly, the characteristic maximum of S as function of temperature can be explained by the anomalous momentum dependence of the single-particle scattering rate. Secondly, we discuss the role of the actual Fermi surface shape for the occurrence of a sign change of S as a function of temperature and doping.Comment: 4 pages, with eps figure

    Composite quasiparticle formation and the low-energy effective Hamiltonians of the one- and two-dimensional Hubbard Model

    Full text link
    We investigate the effect of hole doping on the strong-coupling Hubbard model at half-filling in spatial dimensions D1D\ge 1. We start with an antiferromagnetic mean-field description of the insulating state, and show that doping creates solitons in the antiferromagnetic background. In one dimension, the soliton is topological, spinless, and decoupled from the background antiferromagnetic fluctuations at low energies. In two dimensions and above, the soliton is non-topological, has spin quantum number 1/2, and is strongly coupled to the antiferromagnetic fluctuations. We derive the effective action governing the quasiparticle motion, study the properties of a single carrier, and comment on a possible description at finite concentration.Comment: REVTEX 3.0, 22 pages with 14 figures in the PostScript format compressed using uufile. Submitted to Phys. Rev. B. The complete PostScript file including figures can be obtained via ftp at ftp://serval.berkeley.edu/hubbard.ps . It is also available via www at http://roemer.fys.ku.dk/recent.ht

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99

    Factor analysis of self-treatment in diabetes mellitus: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-treatment is a treatment of oneself without professional help, which may cause health-related consequences. This investigation examined the self-treatment behaviors in patients with diabetes mellitus in Iran/kashan.</p> <p>Methods</p> <p>The patients who referred to the clinic of diabetes and those who were admitted to the General hospital in the city of Kashan due to diabetes mellitus were asked to participate in this cross-sectional study. For data collection, The 25 item questionnaire of Likert scale type with four scales was used. Factor analysis was performed to define the patterns of self-treatment.</p> <p>Results</p> <p>398 patients participated in the study. The mean age of the study population was 54.9 ± 12.9 years. The majority (97%) had type 2 diabetes. 50% of patients reported self- treatment. The self-treatment score was 45.8 ± 8.8 (25-100). Female gender, lower education and co-morbid illnesses of hypertension, hyperlipidemia and cardiac disease had significant relationship with self-treatment. The factor analysis procedure revealed seven factors that explained the 43% of variation in the self-treatment. These seven factors were categorized as knowledge, deficiencies of formal treatments, available self-treatment methods, physician related factors, the tendency to use herbal remedies, underlying factors such as gender and factors related to diabetes.</p> <p>Conclusions</p> <p>There is a medium tendency for self-treatment in diabetic patients. The assessment of self-treatment practices must be an essential part of patients' management in diabetes care.</p

    The Radish Gene Reveals a Memory Component with Variable Temporal Properties

    Get PDF
    Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore