134,330 research outputs found

    Theory of Pulsar Wind Nebulae

    Full text link
    Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.Comment: 9 page, 5 figures, Proceeding of the conference "40 Years of Pulsars", 12-17 August 2007, Montreal, Canada. (figures are not properly displayed in .ps or .pdf version please download archive for them

    The Parkes Pulsar Timing Array

    Full text link
    Detection and study of gravitational waves from astrophysical sources is a major goal of current astrophysics. Ground-based laser-interferometer systems such as LIGO and VIRGO are sensitive to gravitational waves with frequencies of order 100 Hz, whereas space-based systems such as LISA are sensitive in the millihertz regime. Precise timing observations of a sample of millisecond pulsars widely distributed on the sky have the potential to detect gravitational waves at nanohertz frequencies. Potential sources of such waves include binary super-massive black holes in the cores of galaxies, relic radiation from the inflationary era and oscillations of cosmic strings. The Parkes Pulsar Timing Array (PPTA) is an implementation of such a system in which 20 millisecond pulsars have been observed using the Parkes radio telescope at three frequencies at intervals of two -- three weeks for more than two years. Analysis of these data has been used to limit the gravitational wave background in our Galaxy and to constrain some models for its generation. The data have also been used to investigate fluctuations in the interstellar and Solar-wind electron density and have the potential to investigate the stability of terrestrial time standards and the accuracy of solar-system ephemerides.Comment: 9 pages, 6 figures, Proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars and More", Montreal, August 2007. Corrected SKA detection limi

    Quakes in Solid Quark Stars

    Full text link
    A starquake mechanism for pulsar glitches is developed in the solid quark star model. It is found that the general glitch natures (i.e., the glitch amplitudes and the time intervals) could be reproduced if solid quark matter, with high baryon density but low temperature, has properties of shear modulus \mu = 10^{30~34} erg/cm^3 and critical stress \sigma_c = 10^{18~24} erg/cm^3. The post-glitch behavior may represent a kind of damped oscillations.Comment: 11 pages, 4 figures (but Fig.3 is lost), a complete version can be obtained by http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.htm, a new version to be published on Astroparticle Physic

    Van der Waals epitaxy of Bi2Se3 on Si(111) vicinal surface: An approach to prepare high-quality thin films of topological insulator

    Get PDF
    Epitaxial growth of topological insulator Bi2Se3 thin films on nominally flat and vicinal Si(111) substrates is studied. In order to achieve planner growth front and better quality epifilms, a two-step growth method is adopted for the van der Waal epitaxy of Bi2Se3 to proceed. By employing vicinal Si(111) substrate surfaces, the in-pane growth rate anisotropy of Bi2Se3 is explored to achieve single crystalline Bi2Se3 epifilms, in which threading defects and twins are effectively suppressed. Optimization of the growth parameters has resulted in vicinal Bi2Se3 films showing a carrier mobility of ~ 2000 cm2V-1s-1 and the background doping of ~ 3 x 1018 cm-3 of the as-grown layers. Such samples not only show relatively high magnetoresistance but also a linear dependence on magnetic field.Comment: 18 pages, 4 figure

    On the Wang-Landau Method for Off-Lattice Simulations in the "Uniform" Ensemble

    Full text link
    We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte-Carlo moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of kinetic and configurational contributions to the density of states. By constructing a "uniform" ensemble for configurational degrees of freedom--in which all potential energies, volumes, and numbers of particles are equally probable--we establish a framework for the correct implementation of simulation acceptance criteria and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.Comment: 21 pages, 4 figure

    Magneto-infrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe5_5

    Full text link
    We present a magneto-infrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe5_5. We observe clear transitions between Landau levels and their further splitting under magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D \emph{massless} Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe5_5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides a direct and bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizeable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under current magnetic field configuration.Comment: Editors' Suggestio
    corecore