19 research outputs found
Metabolic control level and glucose variability in adolescents with type 1 diabetes during low and high-intensity exercise
OBJECTIVE
The main purpose of this study was to characterize the determinants of metabolic changes in young type 1 diabetes (T1DM) and to determine glycemic variability during low and high-intensity exercise.
PATIENTS AND METHODS
20 young male T1DM patients were divided into two subgroups characterized by levels of glycated hemoglobin (HbA1c): HbA1c7.3% (worse HbA1c subgroup, n=10). All participants performed a maximal oxygen uptake test and two efforts of various intensities (45 minutes of aerobic exercise and 30 minutes of mixed aerobic-anaerobic intensity exercise). Continuous glucose monitors (CGM) were used to control the glucose concentration.
RESULTS
Changes in biomarkers describing the metabolic response were similar in both groups. A comparison of applied efforts exhibited that maximal capacity effort resulted in the highest values of blood glucose (BG) at the end (150.9-160.6 mg/dl) and 1 hour after the exercise (140.2-161.3 mg/dl). BG concentration before, during, 1 hour, and 24 hours after each exercise was insignificantly higher in the worse Hb1Ac group.
CONCLUSIONS
HbA1c levels are insufficient to confirm whether the applied effort is performed in acceptable glycemic values. The CGM monitors allow for precise control of BG variations and accurate planning of physical activity by adjusting the insulin and carbohydrate consumption dose
Ozonation of Whole Blood Results in an Increased Release of Microparticles from Blood Cells.
Autohemotherapy with ozonated blood is used in the treatment of a broad spectrum of clinical disorders. Ozone demonstrates strong oxidizing properties and causes damage to cell membranes. The impact of whole-blood ozonation on the release of microparticles from blood and endothelial cells and the concentration of selected markers in the hemostatic system (APTT, PT, D-dimer, fibrinogen) were investigated. Venous blood, obtained from 19 healthy men, was split into four equal parts and treated with air, 15 ”g/mL ozone, or 30 ”g/mL ozone, or left untreated. The number and types of microparticles released were determined using flow cytometry on the basis of surface antigen expression: erythrocyte-derived microparticles (CD235+), platelet-derived microparticles (CD42+), leukocyte-derived microparticles (CD45+), and endothelial-derived microparticles (CD144+). The study is the first to demonstrate that ozone induces a statistically significant increase in the number of microparticles derived from blood and endothelial cells. Although statistically significant, the changes in some coagulation factors were somewhat mild and did not exceed normal values
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background Approximately 450â000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63â093 individuals in the FHSC registry, 11â848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11â476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11â848 individuals. Median age at registry entry was 9·6 years (IQR 5·8â13·2). 10â099 (89·9%) of 11â235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11â848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10â202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10â804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10â428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05â6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50â75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, SanofiâAventis, Daiichi Sankyo, and Regeneron
Ozonation of Whole Blood Results in an Increased Release of Microparticles from Blood Cells
Autohemotherapy with ozonated blood is used in the treatment of a broad spectrum of clinical disorders. Ozone demonstrates strong oxidizing properties and causes damage to cell membranes. The impact of whole-blood ozonation on the release of microparticles from blood and endothelial cells and the concentration of selected markers in the hemostatic system (APTT, PT, D-dimer, fibrinogen) were investigated. Venous blood, obtained from 19 healthy men, was split into four equal parts and treated with air, 15 µg/mL ozone, or 30 µg/mL ozone, or left untreated. The number and types of microparticles released were determined using flow cytometry on the basis of surface antigen expression: erythrocyte-derived microparticles (CD235+), platelet-derived microparticles (CD42+), leukocyte-derived microparticles (CD45+), and endothelial-derived microparticles (CD144+). The study is the first to demonstrate that ozone induces a statistically significant increase in the number of microparticles derived from blood and endothelial cells. Although statistically significant, the changes in some coagulation factors were somewhat mild and did not exceed normal values