4 research outputs found

    UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

    Get PDF
    Challenges in understanding the aerosol–cloud interactions and their impacts on global climate highlight the need for improved knowledge of the underlying physical processes and feedbacks as well as their interactions with cloud and boundary layer dynamics. To pursue this goal, increasingly sophisticated cloud-scale models are needed to complement the limited supply of observations of the interactions between aerosols and clouds. For this purpose, a new large-eddy simulation (LES) model, coupled with an interactive sectional description for aerosols and clouds, is introduced. The new model builds and extends upon the well-characterized UCLA Large-Eddy Simulation Code (UCLALES) and the Sectional Aerosol module for Large-Scale Applications (SALSA), hereafter denoted as UCLALES-SALSA. Novel strategies for the aerosol, cloud and precipitation bin discretisation are presented. These enable tracking the effects of cloud processing and wet scavenging on the aerosol size distribution as accurately as possible, while keeping the computational cost of the model as low as possible. The model is tested with two different simulation set-ups: a marine stratocumulus case in the DYCOMS-II campaign and another case focusing on the formation and evolution of a nocturnal radiation fog. It is shown that, in both cases, the size-resolved interactions between aerosols and clouds have a critical influence on the dynamics of the boundary layer. The results demonstrate the importance of accurately representing the wet scavenging of aerosol in the model. Specifically, in a case with marine stratocumulus, precipitation and the subsequent removal of cloud activating particles lead to thinning of the cloud deck and the formation of a decoupled boundary layer structure. In radiation fog, the growth and sedimentation of droplets strongly affect their radiative properties, which in turn drive new droplet formation. The size-resolved diagnostics provided by the model enable investigations of these issues with high detail. It is also shown that the results remain consistent with UCLALES (without SALSA) in cases where the dominating physical processes remain well represented by both models

    Aerosol-landscape-cloud interaction : Signatures of topography effect on cloud droplet formation

    Get PDF
    Long-term in situ measurements of aerosol–cloud interactions are usually performed in measurement stations residing on hills, mountains, or high towers. In such conditions, the surface topography of the surrounding area can affect the measured cloud droplet distributions by increasing turbulence or causing orographic flows and thus the observations might not be representative for a larger scale. The objective of this work is to analyse, how the local topography affects the observations at Puijo measurement station, which is located in the 75 m high Puijo tower, which itself stands on a 150 m high hill. The analysis of the measurement data shows that the observed cloud droplet number concentration mainly depends on the cloud condensation nuclei (CCN) concentration. However, when the wind direction aligns with the direction of the steepest slope of the hill, a clear topography effect is observed. This finding was further analysed by simulating 3-D flow fields around the station and by performing trajectory ensemble modelling of aerosol- and wind-dependent cloud droplet formation. The results showed that in typical conditions, with geostrophic winds of about 10 m s−1, the hill can cause updrafts of up to 1 m s−1 in the air parcels arriving at the station. This is enough to produce in-cloud supersaturations (SSs) higher than typically found at the cloud base of  ∼  0.2 %), and thus additional cloud droplets may form inside the cloud. In the observations, this is seen in the form of a bimodal cloud droplet size distribution. The effect is strongest with high winds across the steepest slope of the hill and with low liquid water contents, and its relative importance quickly decreases as these conditions are relaxed. We therefore conclude that, after careful screening for wind speed and liquid water content, the observations at Puijo measurement station can be considered representative for clouds in a boreal environment

    Aerosol-landscape-cloud interaction : Signatures of topography effect on cloud droplet formation

    Get PDF
    Long-term in situ measurements of aerosol–cloud interactions are usually performed in measurement stations residing on hills, mountains, or high towers. In such conditions, the surface topography of the surrounding area can affect the measured cloud droplet distributions by increasing turbulence or causing orographic flows and thus the observations might not be representative for a larger scale. The objective of this work is to analyse, how the local topography affects the observations at Puijo measurement station, which is located in the 75 m high Puijo tower, which itself stands on a 150 m high hill. The analysis of the measurement data shows that the observed cloud droplet number concentration mainly depends on the cloud condensation nuclei (CCN) concentration. However, when the wind direction aligns with the direction of the steepest slope of the hill, a clear topography effect is observed. This finding was further analysed by simulating 3-D flow fields around the station and by performing trajectory ensemble modelling of aerosol- and wind-dependent cloud droplet formation. The results showed that in typical conditions, with geostrophic winds of about 10 m s−1, the hill can cause updrafts of up to 1 m s−1 in the air parcels arriving at the station. This is enough to produce in-cloud supersaturations (SSs) higher than typically found at the cloud base of  ∼  0.2 %), and thus additional cloud droplets may form inside the cloud. In the observations, this is seen in the form of a bimodal cloud droplet size distribution. The effect is strongest with high winds across the steepest slope of the hill and with low liquid water contents, and its relative importance quickly decreases as these conditions are relaxed. We therefore conclude that, after careful screening for wind speed and liquid water content, the observations at Puijo measurement station can be considered representative for clouds in a boreal environment

    Aerosol–landscape–cloud interaction: signatures of topography effect on cloud droplet formation

    Get PDF
    Long-term in situ measurements of aerosol–cloud interactions are usually performed in measurement stations residing on hills, mountains, or high towers. In such conditions, the surface topography of the surrounding area can affect the measured cloud droplet distributions by increasing turbulence or causing orographic flows and thus the observations might not be representative for a larger scale. The objective of this work is to analyse, how the local topography affects the observations at Puijo measurement station, which is located in the 75 m high Puijo tower, which itself stands on a 150 m high hill. The analysis of the measurement data shows that the observed cloud droplet number concentration mainly depends on the cloud condensation nuclei (CCN) concentration. However, when the wind direction aligns with the direction of the steepest slope of the hill, a clear topography effect is observed. This finding was further analysed by simulating 3-D flow fields around the station and by performing trajectory ensemble modelling of aerosol- and wind-dependent cloud droplet formation. The results showed that in typical conditions, with geostrophic winds of about 10 m s−1, the hill can cause updrafts of up to 1 m s−1 in the air parcels arriving at the station. This is enough to produce in-cloud supersaturations (SSs) higher than typically found at the cloud base of  ∼  0.2 %), and thus additional cloud droplets may form inside the cloud. In the observations, this is seen in the form of a bimodal cloud droplet size distribution. The effect is strongest with high winds across the steepest slope of the hill and with low liquid water contents, and its relative importance quickly decreases as these conditions are relaxed. We therefore conclude that, after careful screening for wind speed and liquid water content, the observations at Puijo measurement station can be considered representative for clouds in a boreal environment
    corecore