7,248 research outputs found

    A Statistical Study of GRB X-ray Flares: Evidence of Ubiquitous Bulk Acceleration in the Emission Region

    Full text link
    When emission in a conical relativistic jet ceases abruptly (or decays sharply), the observed decay light curve is controlled by the high-latitude "curvature effect". Recently, Uhm & Zhang found that the decay slopes of three GRB X-ray flares are steeper than what the standard model predicts. This requires bulk acceleration of the emission region, which is consistent with a Poynting-flux-dominated outflow. In this paper, we systematically analyze a sample of 85 bright X-ray flares detected in 63 Swift GRBs, and investigate the relationship between the temporal decay index α\alpha and spectral index β\beta during the steep decay phase of these flares. The α\alpha value depends on the choice of the zero time point t0t_0. We adopt two methods. "Method I" takes t0It_0^I as the first rising data point of each flare, and is the most conservative approach. We find that at 99.9% condifence level 56/85 flares have decay slopes steeper than the simplest curvature effect prediction, and therefore, are in the acceleration regime. "Method II" extrapolates the rising light curve of each flare backwards until the flux density is three orders of magnitude lower than the peak flux density, and defines the corresponding time as the time zero point (t_0^II). We find that 74/85 flares fall into the acceleration regime at 99.9% condifence level. This suggests that bulk acceleration is common, may be even ubiquitous among X-ray flares, pointing towards a Poynting-flux-dominated jet composition for these events.Comment: 68 pages, 6 figures, 2 tables, ApJS, in pres

    Flat bands and Z2 topological phases in a non-Abelian kagome lattice

    Get PDF
    We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and inversion symmetries, the energy bands consist of three doubly degenerate bands whose energy and conditions for the presence of flat bands could be obtained analytically, allowing us to tune the flat band with respect to the other two dispersive bands from the top to the middle and then to the bottom of the three bands. We further study the gapped phases of the model and show that they belong to the same phase as the band gaps only close at discrete points of the parameter space, making any two gapped phases adiabatically connected to each other without closing the band gap. Using the Pfaffian approach based on the time-reversal symmetry and parity characterization from the inversion symmetry, we calculate the bulk topological invariants and demonstrate that the unique gapped phases belong to the Z2 quantum spin Hall phase, which is further confirmed by the edge state calculation

    Evolutionary optimization of a fed-batch penicillin fermentation process

    Get PDF
    This paper presents a genetic algorithms approach for the optimization of a fed-batch penicillin fermentation process. A customized float-encoding genetic algorithm is developed and implemented to a benchmark fed-batch penicillin fermentation process. Off-line optimization of the initial conditions and set points are carried out in two stages for a single variable and multiple variables. Further investigations with online optimization have been carried out to demonstrate that the yield can be significantly improved with an optimal feed rate profile. The results have shown that the proposed approaches can be successfully applied to optimization problems of fed-batch fermentation to improve the operation of such processes

    Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits

    Full text link
    We study the coherent control of microwave photons propagating in a superconducting waveguide consisting of coupled transmission line resonators, each of which is connected to a tunable charge qubit. While these coupled line resonators form an artificial photonic crystal with an engineered photonic band structure, the charge qubits collectively behave as spin waves in the low excitation limit, which modify the band-gap structure to slow and stop the microwave propagation. The conceptual exploration here suggests an electromagnetically controlled quantum device based on the on-chip circuit QED for the coherent manipulation of photons, such as the dynamic creation of laser-like output from the waveguide by pumping the artificial atoms for population inversion.Comment: 8 pages, 3 figure
    • …
    corecore