954 research outputs found

    Radiation reaction force induced nonlinear mixing of Raman sidebands of an ultra-intense laser pulse in a plasma

    Full text link
    Stimulated Raman scattering of an ultra-intense laser pulse in plasmas is studied by perturbatively including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion for plasma electrons. In this approximation, radiation reaction force causes phase shift in nonlinear current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of the forward Raman scattering instability

    Nuclear-size self-energy and vacuum-polarization corrections to the bound-electron g factor

    Full text link
    The finite nuclear-size effect on the leading bound-electron g factor and the one-loop QED corrections to the bound-electron g factor is investigated for the ground state of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Z\alpha\ (where Z is the nuclear charge and \alpha\ is the fine structure constant) and for the Fermi model of the nuclear charge distribution. In the result, theoretical predictions for the isotope shift of the 1s bound-electron g factor are obtained, which can be used for the determination of the difference of nuclear charge radii from experimental values of the bound-electron g factors for different isotopes

    Positronium in intense laser fields

    Full text link
    The dynamics and radiation of positronium is investigated in intense laser fields.Comment: 13 pages, 3 figure

    Robust signatures of quantum radiation reaction in focused ultrashort laser pulses

    Get PDF
    Radiation reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semi-classical description for the radiation dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behaviour of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser beam parameters in a large range. They fully differ qualitatively from those in the classical radiation reaction regime and are measurable with presently available laser technology

    Streaking At High Energies With Electrons And Positrons

    Full text link
    State-of-the-art attosecond metrology deals with the detection and characterization of photon pulses with typical energies up to the hundreds of eV and time resolution of several tens of attoseconds. Such short pulses are used for example to control the motion of electrons on the atomic scale or to measure inner-shell atomic dynamics. The next challenge of time-resolving the inner-nuclear dynamics, transient meson states and resonances requires photon pulses below attosecond duration and with energies exceeding the MeV scale. Here we discuss a detection scheme for time-resolving high-energy gamma ray pulses down to the zeptosecond timescale. The scheme is based on the concept of attosecond streak imaging, but instead of conversion of photons into electrons in a nonlinear medium, the high-energy process of electron-positron pair creation is utilized. These pairs are produced in vacuum through the collision of a test pulse to be characterized with an intense laser pulse, and they acquire additional energy and momentum depending on their phase in the streaking pulse at the moment of production. A coincidence measurement of the electron and positron momenta after the interaction provides information on the pair production phase within the streaking pulse. We examine the limitations imposed by quantum radiation reaction in multiphoton Compton scattering on this detection scheme, and discuss other necessary conditions to render the scheme feasible in the upcoming Extreme Light Infrastructure (ELI) laser facility.Comment: 6 pages, 2 figures, contribution to the AIP proceedings of "Light at Extreme Intensities" (LEI 2011), Szeged, Hungary, Nov 14-18, 201
    • …
    corecore