5 research outputs found

    СЕЙСМОТЕКТОНИКА ВНУТРЕННЕГО ТЯНЬ-ШАНЯ: СУУСАМЫРСКАЯ ВПАДИНА И ПРИЛЕГАЮЩИЕ ТЕРРИТОРИИ

    Get PDF
    The Ms=7.3 Suusamyr earthquake of August 19, 1992 occurred in an area reputedly aseismic. Because it was not expected there, this event attracted worldwide attention of researchers in seismology and seismotectonics, but their results have not been included in the most recent seismic zoning map of Kyrgyzstan. New studies of neotectonic structures and focal mechanisms of earthquakes in the Suusamyr area and adjacent areas give reason to revise the established notions about the seismicity of the region. The seismic hazard in Inner Tienshan appears important and Mmax are comparable to those of the Northern and Southern Tienshan, where numerous destructive events were documented in the XIX and XX centuries. For the southern parts of the study area, along Naryn River, where hydroelectric power stations are planned, the new data should be used.Суусамырское землетрясение (М=7.3) произошло 19 августа 1992 г. в предположительно асей­смичном районе. Поскольку это событие оказалось неожиданным, оно привлекло внимание исследователей в области сейсмологии и сейсмотектоники всего мира. Однако результаты данных исследований не нашли отражения на последней карте сейсмического районирования Кыргызстана. Новые структурные исследования активных разломов и механизмов очагов землетрясений Суусамырской впадины и прилегающих территорий дают основание пересмотреть сложившиеся представления о сейсмичности региона. Сейсмическая опасность во Внутреннем Тянь-Шане (Ммах) представляется сопоставимой с таковыми в Северном и Южном Тянь-Шане, где были зарегистрированы многочисленные разрушительные события XIX и XX века. Полученные данные желательно учитывать на юге изученной территории, где планируется строительство гидроэлектростанций Нарынского каскада

    Locations and magnitudes of earthquakes in Central Asia from seismic intensity data

    No full text
    We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502-1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885-1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH = 7.8 and MIW = 7.6 considering surface wave and moment magnitude, respectively) than the value M = 8.2 listed in the considered catalog. These values are more in agreement with the value M (S) = 7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1-11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167-1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH = 6.9 and MIW = 6.8)

    Locations and magnitudes of earthquakes in Central Asia from seismic intensity data

    No full text
    We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e.MILH=7.8 andMIW=7.6 considering surface wave and moment magnitude, respectively) than the value M=8.2 listed in the considered catalog. These values are more in agreement with the value MS=7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), wheremost of the seismicmoment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH=6.9 and MIW=6.8).Published1-215.1. TTC - Banche dati e metodi macrosismiciJCR Journalrestricte

    Locations and magnitudes of earthquakes in Central Asia from seismic intensity data

    No full text
    We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e.MILH=7.8 andMIW=7.6 considering surface wave and moment magnitude, respectively) than the value M=8.2 listed in the considered catalog. These values are more in agreement with the value MS=7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), wheremost of the seismicmoment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH=6.9 and MIW=6.8)
    corecore