14,671 research outputs found

    Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    Get PDF
    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS478 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    News on PHOTOS Monte Carlo: gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma)

    Full text link
    PHOTOS Monte Carlo is widely used for simulating QED effects in decay of intermediate particles and resonances. It can be easily connected to other main process generators. In this paper we consider decaying processes gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma) in the framework of Scalar QED. These two processes are interesting not only for the technical aspect of PHOTOS Monte Carlo, but also for precision measurement of alpha_{QED}(M_Z), g-2, as well as pi pi scattering lengths.Comment: 6 pages, 11 figures, proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    Classification of Arbitrary Multipartite Entangled States under Local Unitary Equivalence

    Full text link
    We propose a practical method for finding the canonical forms of arbitrary dimensional multipartite entangled states, either pure or mixed. By extending the technique developed in one of our recent works, the canonical forms for the mixed NN-partite entangled states are constructed where they have inherited local unitary symmetries from their corresponding N+1N+1 pure state counterparts. A systematic scheme to express the local symmetries of the canonical form is also presented, which provides a feasible way of verifying the local unitary equivalence for two multipartite entangled states.Comment: 22 pages; published in J. Phys. A: Math. Theo

    Quantum Transport Simulation of III-V TFETs with Reduced-Order K.P Method

    Full text link
    III-V tunneling field-effect transistors (TFETs) offer great potentials in future low-power electronics application due to their steep subthreshold slope and large "on" current. Their 3D quantum transport study using non-equilibrium Green's function method is computationally very intensive, in particular when combined with multiband approaches such as the eight-band K.P method. To reduce the numerical cost, an efficient reduced-order method is developed in this article and applied to study homojunction InAs and heterojunction GaSb-InAs nanowire TFETs. Device performances are obtained for various channel widths, channel lengths, crystal orientations, doping densities, source pocket lengths, and strain conditions

    Circadian rhythms and mood: Opportunities for multi‐level analyses in genomics and neuroscience

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102671/1/bies201300141.pd

    Chinese double-entry bookkeeping before the nineteenth century

    Get PDF
    This paper examines the origination and evolution of Chinese double-entry- bookkeeping from the fifteenth century to eighteenth century. It demonstrates that Chinese merchants and bankers invented some types of double-entry spontaneously around the late fifteenth and early sixteenth centuries. Several different versions of Chinese double-entry existed and evolved throughout this period to the nineteenth century. Chinese versions of double-entry are similar to Italian-style bookkeeping, although Chinese experience was independent of the dissemination of the Western methods
    • 

    corecore