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COVARIANCE APPROXIMATION FOR LARGE MULTIVARIATE

SPATIAL DATA SETS WITH AN APPLICATION TO

MULTIPLE CLIMATE MODEL ERRORS1
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This paper investigates the cross-correlations across multiple cli-
mate model errors. We build a Bayesian hierarchical model that ac-
counts for the spatial dependence of individual models as well as
cross-covariances across different climate models. Our method allows
for a nonseparable and nonstationary cross-covariance structure. We
also present a covariance approximation approach to facilitate the
computation in the modeling and analysis of very large multivariate
spatial data sets. The covariance approximation consists of two parts:
a reduced-rank part to capture the large-scale spatial dependence,
and a sparse covariance matrix to correct the small-scale dependence
error induced by the reduced rank approximation. We pay special
attention to the case that the second part of the approximation has
a block-diagonal structure. Simulation results of model fitting and
prediction show substantial improvement of the proposed approxima-
tion over the predictive process approximation and the independent
blocks analysis. We then apply our computational approach to the
joint statistical modeling of multiple climate model errors.

1. Introduction. This paper addresses the problem of combining mul-
tiple climate model outputs while accounting for dependence across differ-
ent models as well as spatial dependence within each individual model. To
study the impact of human activity on climate change, the Intergovernmen-
tal Panel on Climate Change (IPCC) is coordinating efforts worldwide to
develop coupled atmosphere-ocean general circulation models (AOGCMs).
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Various organizations around the world are developing state-of-the-art nu-
merical models and currently 20+ climate models are available. A growing
body of literature also exists that studies multiple climate model outputs
[e.g., Tebaldi et al. (2005); Furrer et al. (2007); Jun, Knutti and Nychka
(2008a, 2008b); Smith et al. (2009); Sain and Furrer (2010); Christensen
and Sain (2010); Sain, Furrer and Cressie (2011)]. One important research
problem of interest regarding these climate model outputs is to investi-
gate the cross-correlations across climate model errors [Tebaldi and Knutti
(2007); Jun, Knutti and Nychka (2008a, 2008b); Knutti et al. (2010b)]. Cli-
mate models are constantly copied and compared, and successful approxima-
tion schemes are frequently borrowed from other climate models. Therefore,
many of the climate models are dependent to some degree and thus may
be expected to have correlated errors. For similar reasons, we may expect
correlations to be higher between the models developed by the same orga-
nization. Indeed, Jun, Knutti and Nychka (2008a, 2008b) quantified cross-
correlations between pairs of climate model errors at each spatial location
and the results show that many climate model errors have high correlations
and some of the models developed by the same organizations have even
higher correlated errors. Note that throughout the paper, we use the termi-
nology “error” rather than “bias” to describe the discrepancy between the
climate model output and the true climate. The reason is that we consider
the “error” as a stochastic process rather than a deterministic quantity.

In this paper we build a joint statistical model for multiple climate model
errors that accounts for the spatial dependence of individual models as well
as cross-covariance across different climate models. Our model offers a non-
separable cross-covariance structure. We work with a climate variable, sur-
face temperature, from multiple global AOGCM outputs. We include sev-
eral covariates such as latitude, land/ocean effect, and altitude in the mean
structure. The marginal and cross-covariance structure of climate model er-
rors are modeled using a spatially varying linear model of co-regionalization
(LMC). The resulting covariance structure is nonstationary and is able to
characterize the spatially varying cross-correlations between multiple cli-
mate model errors. Our modeling approach complements in many ways the
previous work of Jun, Knutti and Nychka (2008b). Jun, Knutti and Nychka
(2008b) used kernel smoothing of the products of climate model errors to
obtain cross-correlations and did not formally build joint statistical mod-
els for multiple climate model outputs. One direct product of our model
is a continuous surface map for the cross-covariances. Our Bayesian hier-
archical modeling approach also provides uncertainty measures of the esti-
mations of the spatially varying cross-covariances, while it is a challenging
task to achieve for the kernel smoothing approach. In Jun, Knutti and Ny-
chka (2008b) they fit each climate model error separately to a univariate
regression model before obtaining the kernel estimate of cross-correlations.
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They only considered land/ocean effect in the covariance structure. In our
approach, we not only include the land/ocean effect but also altitude and lat-
itude in the cross-covariance structure of the climate model errors. As a sta-
tistical methodology, joint modeling is more efficient in estimating model
parameters. Moreover, our approach is able to produce spatial prediction
or interpolation and thus is potentially useful as a statistical downscaling
technique for multivariate climate model outputs.

The naive implementation of our modeling approach faces a big com-
putational challenge because it requires repeated calculations of quadratic
forms in large inverse covariance matrices and determinants of large covari-
ance matrices, needed in the posterior distribution and likelihood evaluation.
This is a well-known challenge when dealing with large spatial data sets.
Various methods have been proposed in the literature to overcome this chal-
lenge, including likelihood approximation [Vecchia (1988); Stein, Chi and
Welty (2004); Fuentes (2007); Caragea and Smith (2007)], covariance taper-
ing [Furrer, Genton and Nychka (2006); Kaufman, Schervish and Nychka
(2008)], Gaussian Markov random-field approximation [Rue and Tjelme-
land (2002); Rue and Held (2005)] and reduced rank approximation [Higdon
(2002); Wikle and Cressie (1999); Ver Hoef, Cressie and Barry (2004); Kam-
mann and Wand (2003); Cressie and Johannesson (2008); Banerjee et al.
(2008)]. Most of these methods focus on univariate processes. One of the ex-
ceptions is the predictive process approach [Banerjee et al. (2008)]. Although
the predictive process approach is applicable to our multivariate model, it
is not a perfect choice because it usually fails to accurately capture local,
small-scale dependence structures [Finley et al. (2009)].

We develop a new covariance approximation for multivariate processes
that improves the predictive process approach. Our covariance approxima-
tion, called the full-scale approximation, consists of two parts: The first
part is the same as the multivariate predictive process, which is effective
in capturing large-scale spatial dependence; and the second part is a sparse
covariance matrix that can approximate well the small-scale spatial depen-
dence, that is, unexplained by the first part. The complementary form of our
covariance approximation enables the use of reduced-rank and sparse matrix
operations and hence greatly facilitates computation in the application of
the Gaussian process models for large data sets. Although our method is de-
veloped to study multiple climate model errors, it is generally applicable to
a wide range of multivariate Gaussian process models involving large spatial
data sets. The full-scale approximation has been previously studied for uni-
variate processes in Sang and Huang (2010), where covariance tapering was
used to generate the second part of the full-scale approximation. In addition
to the covariance tapering, this paper considers using block diagonal covari-
ance for the same purpose. Simulation results of model fitting and prediction
using the full-scale approximation show substantial improvement over the
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predictive process and the independent blocks analysis. We also find that
using the block diagonal covariance achieves even faster computation than
using covariance tapering with comparable performance.

Our work contributes to the literature of statistical modeling of climate
model outputs. Despite high correlations between the errors of some climate
models, it has been commonly assumed that climate model outputs and/or
their errors are independent of each other [Giorgi and Mearns (2002); Tebaldi
et al. (2005); Green, Goddard and Lall (2006); Furrer et al. (2007); Smith
et al. (2009); Furrer and Sain (2009); Tebaldi and Sansó (2009)]. Only re-
cently, several authors have attempted to build joint models for multiple cli-
mate model outputs that account for the dependence across different climate
models. For example, Sain and Furrer (2010) used a multivariate Markov
random-field (MRF) approach to analyze 20-year average precipitation data
from five different regional climate model (RCM) outputs. They presented
a method to combine the five RCM outputs as a weighted average and the
weights are determined by the cross-covariance structure of different RCM
outputs. Sain, Furrer and Cressie (2011) built multivariate MRF models for
the analysis of two climate variables, precipitation and temperature, from
six ensemble members of an RCM (three ensemble members for each climate
variable). Their model is designed for what they call simple ensembles that
resulted from the perturbed initial conditions of one RCM, not for multiple
RCMs. Unlike our approach, the MRF models are best suited for lattice
data, and it might be difficult for their approach to incorporate covariates
information into the cross-covariance structure. Christensen and Sain (2010)
used the factor model approach to integrate multiple RCM outputs. Their
analysis is done at each spatial location independently and, thus, the spatial
dependence across grid pixels is not considered in the analysis. We believe
our modeling and computational method provides a flexible alternative to
these existing approaches in joint modeling of climate model outputs.

The remainder of the paper is organized as follows. In Section 2 we detail
the motivating data set of climate model errors and present a multivariate
spatial process model to analyze the data. Section 3 introduces a covariance
approximation method to address the model fitting issues with large mul-
tivariate spatial data sets. In Section 4 we present a simulation study to
explore properties of the proposed computational method. The full analysis
of the climate errors data is then offered in Section 5. Finally, we conclude
the paper in Section 6.

2. Data and the multivariate spatial model.

2.1. Data. Our goal is to build a joint statistical model for multiple cli-
mate model errors. By climate model error, we mean the difference between
the climate model output and the corresponding observations. We use sur-
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Table 1

The names of modeling groups, country, IPCC I.D. and resolutions of the IPCC model
outputs used in the study. The resolution of the observations is 5◦ × 5◦

Resolution

Group Country IPCC I.D. (longitude× latitude)

1 US Dept. of Commerce/NOAA/ USA GFDL-CM2.0 2.5◦ × 2◦

Geophysical Fluid
Dynamics Laboratory

2 US Dept. of Commerce/NOAA/ USA GFDL-CM2.1 2.5◦ × 2◦

Geophysical Fluid
Dynamics Laboratory

3 Hadley Centre for Climate UK UKMO-HadCM3 3.79◦ × 2.47◦

Prediction and Research/
Met Office

4 Hadley Centre for Climate UK UKMO-HadGEM1 1.875◦ × 1.24◦

Prediction and Research/
Met Office

5 LASG/Institute of China FGOALS-g1.0 2.81◦ × 3◦

Atmospheric Physics

face temperature (unit: K) with global coverage obtained from the AOGCM
simulations as well as the observations. The observations are provided by
the Climate Research Unit (CRU), East Anglia, and the Hadley Centre, UK
MetOffice [Jones et al. (1999); Rayner et al. (2006)]. The data (both climate
model outputs and observations) are monthly averages given on a regular
spatial grid (the resolution is 5◦ × 5◦). A list of the climate models used
in this study is given in Table 1. These climate models are developed by
different modeling groups worldwide, under the coordination of the IPCC,
and they use common initial conditions. Each model has their own grid res-
olution. We consider the 30 year interval 1970–1999 and due to the lack of
observations near the polar area, we only consider temperature data taken
between latitude 45◦ S and 72◦ N, with the full longitude ranging from
180◦ W to 180◦ E. We still have missing observations at a few pixels and
we impute by taking the average of the spatially neighboring cells (all eight
neighboring cells if all are available). We study climatological mean state in
the sense that we first get a seasonal average temperature (e.g., an average of
the monthly temperature from December to February) and then average it
over 30 years. We denote this 30 year average of Boreal winter temperature
by DJF.

As mentioned earlier, we calculate model errors by taking the difference
between climate model outputs and actual observations. However, as shown
in Table 1, the climate model outputs and the observations are at different
spatial grid resolutions. Since the observations have the coarsest grid, we use
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the bilinear interpolation of the model output to the observational grid. That
is, at each grid pixel (in the observation grid), we use the weighted average of
model outputs at the four nearest pixels in the model output grid. Figure 2
displays pictures of the climate model errors for the five climate models listed
in Table 1. First note that the errors of model 5 are significantly larger in
the higher latitudes and in the Himalayan area compared to the errors of the
other models. The climate model error maps exhibit quite similar patterns
among the models developed by the same group, although the errors for
model 1 in the mid-latitude area of the Northern Hemisphere appear to be
larger in magnitude compared to those of model 2. All the models have
larger errors in the Northern Hemisphere and the errors are large over the
high altitude area and high latitude area.

We focus on climate model errors in this paper. Since the climate model
error is defined as the difference between a climate model’s output and
the corresponding observations (we use the observation minus the model
output), we are effectively building a joint model for multiple climate model
outputs with the observations as their means (although we have to be careful
about the sign of the fixed mean part). It would be tantalizing to build an
elaborate joint statistical model of multiple climate model outputs as well
as the observations directly at their original spatial grid resolutions. This
direct modeling approach would require a statistical representation of the
true climate and of the climate model outputs, both of which are challenging
tasks. It would be hard to model the true climate in a reasonably complex
way and the characteristics of observation errors and model errors may not
be simple. Therefore, we do not pursue this direction in this paper.

2.2. Multivariate spatial regression models. Let Y(s) = (Y1(s), . . . ,
YR(s))

T be an R× 1 response vector along with a p×R matrix of regres-
sors X(s) = (X1(s), . . . ,XR(s)) observed at location s ∈D, where D is the
region of interest. For our application, Yi(s) represents the error of climate
model i at location s for i = 1, . . . ,5, Xi(s) the corresponding covariates,
and D represents the surface of the globe. We consider the multivariate
spatial regression model

Y(s) =X
T (s)β +w(s) + ε(s), s ∈D ⊆R

d,(1)

where β = (β1, . . . , βp)
T is a p × 1 column vector of regression coefficients,

w(s) is a multivariate spatial process whose detailed specification is given
below, and the process ε(s) = (ε1(s), . . . , εR(s))

T models the measurement
error for the responses. The measurement error process is typically assumed
to be spatially independent, and at each location, ε(s)∼MVN(0,Σε), where
MVN stands for the multivariate normal distribution, and Σε is an R×R
covariance matrix.
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As a crucial part of model (1), the spatial process w(s) = (w1(s), . . . ,
wR(s))

T captures dependence both within measurements at a given site and
across the sites. We model w(s) as an R-dimensional zero-mean multivari-
ate Gaussian process: w(s) ∼MVN(0,Γw(·, ·)), where the cross-covariance
matrix function of w(s) is defined as Γw(s, s

′) = [Cov(wr(s),wr′(s
′))]Rr,r′=1.

For any integer n and any collection of sites S = (s1, . . . , sn), we denote the
multivariate realizations of w(s) at S as an nR× 1 vector w= (wT (s1), . . . ,
w

T (sn))
T , which follows an nR × 1 multivariate normal distribution w ∼

MVN(0,Σw), where Σw = [Γw(si, sj)]
n
i,j=1 is an nR× nR matrix that can

be partitioned as an n × n block matrix with the (i, j)th block being the
R × R cross-covariance matrix Γw(si, sj). In the multivariate setting, we
require a valid cross-covariance function such that the resultant nR × nR
covariance matrix, Σw, is positive definite.

There have been many works on the construction of flexible cross-covarian-
ce functions [Mardia and Goodall (1993); Higdon, Swall and Kern (1999);
Gaspari and Cohn (1999); Higdon (2002); Ver Hoef, Cressie and Barry
(2004); Gelfand et al. (2004); Majumdar and Gelfand (2007); Gneiting,
Kleiber and Schlather (2010); Jun (2009); Apanasovich and Genton (2010)].
The model in Mardia and Goodall (1993) assumes separable cross-covarian-
ce functions. Higdon (2002) employs discrete approximation to the kernel
convolution based on a set of prespecified square-integrable kernel functions.
The model in Gneiting, Kleiber and Schlather (2010) is isotropic and the
covariance model requires the same spatial range parameters when there are
more than two processes. The model of Apanasovich and Genton (2010) is
developed to model stationary processes and its extension to nonstationary
processes is not obvious.

We adopt the LMC approach [Wackernagel (2003); Gelfand et al. (2004)]
which has recently gained popularity in multivariate spatial modeling due
to its richness in structure and feasibility in computation. Suppose that
U(s) = [Uq(s)]q=1:Q is a Q× 1 process with each Uq(s) independently mod-
eled as a univariate spatial process with mean zero, unit variance and corre-
lation function ρq(·, ·). The cross-covariance function of U(s) is a diagonal

matrix that can be written as Γu(s, s
′) =

⊕Q
q=1 ρq(s, s

′), where
⊕

is the
direct sum matrix operator [e.g., Harville (2008)]. The LMC approach as-
sumes thatw(s) =A(s)U(s), whereA(s) is an R×Q transformation matrix,
that is, nonsingular for all s. For identifiability purposes and without loss
of generality, A(s) can be taken to be a lower-triangular matrix. It follows
that the constructed cross-covariance function for w(s) under this model
is Γw(s, s

′) =A(s)Γu(s, s
′)AT (s′). An alternative expression for the cross-

covariance function is Γw(s, s
′) =

∑Q
q=1 aq(s)a

T
q (s

′)ρq(s, s
′), where aq(s) is

the qth column vector of A(s). The cross-covariance matrix for the realiza-
tions w at n locations S can be written as a block partitioned matrix Σw
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with n × n blocks, whose (i, j)th block is A(si)Γu(si, sj)A
T (sj). We can

express Σw as

Σw =

[

n
⊕

i=1

A(si)

][

Q
⊕

q=1

ρq(si, sj)

]n

i,j=1

[

n
⊕

i=1

A
T (si)

]

=AΣuA
T ,(2)

where A is a block-diagonal matrix with n × n blocks whose ith diagonal
block is A(si),

⊕Q
q=1 ρq(si, sj) is a Q×Q diagonal matrix with ρq(si, sj)’s as

its diagonals, and Σu is an (n× n)-block partitioned matrix with Γu(si, sj)
as its (i, j)th block.

For our climate model application, we utilize the multivariate model (1).
Here, we have R = 5 since five climate model errors are considered. In the
LMC model, the number of latent processes, Q, can take a value from 1 to R.
When Q<R, the multivariate process is represented in a lower dimensional
space and dimensionality reduction is achieved. In this paper, our goal is
to obtain a rich, constructive class of multivariate spatial process models
and, therefore, we assume a full rank LMC model with Q = R = 5. We
do not include the spatial nugget effect ε in the model. For the regression
mean, XT (s)β, we use p= 8 covariates: Legendre polynomials [Abramowitz
and Stegun (1964)] in latitude of order 0 to 4 with sine of latitude as their
arguments, an indicator of land/ocean (we give 1 if the domain is over the
land and 0 otherwise), longitude (unit: degree), and the altitude (altitude
is set to be zero over the ocean). We scale the altitude variable (unit: m)
by dividing it by 1000 to make its range comparable to other covariates.
Our covariates specification is similar to Sain, Furrer and Cressie (2011)
except that we use multiple terms for latitude effects in order to have enough
flexibility to capture the dependence of the process on the entire globe.

For each location s, we model A(s) as a 5 × 5 lower triangular ma-
trix. Two model specifications for A(s) are considered. In one specification,
we assume the linear transformation to be independent of space, that is,
A(s) =A. Thus, we have A(s) = [aij ]i,j=1:5 with aij being nonzero constants
for 1≤ i≤ j ≤ 5 and aij = 0 for i > j. To avoid an identifiability problem, we
let aii > 0 for i= 1, . . . ,5. If the Uq(s) are stationary, this specification results
in a stationary cross-covariance structure. In particular, if the Uq(s) are iden-
tically distributed, this specification results in a separable cross-covariance
structure similarly to Sain and Furrer (2010). In the second specification,
we assume that A(s) vary over space. Specifically, the (i, j)th entry of A(s),
aij(s), is modeled as aij(s) = X

T
A(s)ηij for 1 ≤ i ≤ j ≤ 5, where XA(s) is

a 5× 1 covariate vector at location s and consists of Legendre polynomials
in latitude of order 0 to 2, an indicator of land/ocean, and the scaled alti-
tude. The dimension of ηij is 5×1. This specification induces nonstationary
and nonseparable cross-covariance structure. Note that, similar to the first
specification, to avoid an identifiability problem, we let aii(s) = |XT

A(s)ηii|
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for i= 1, . . . ,5. Gelfand et al. (2004) proposed to model each element of A(s)
as a spatial process, but in practice such an approach is usually computa-
tionally too demanding to be used for large scale problems. Moreover, there
might be identifiability problems if we do not constrain some of the elements
in A(s). Thus, we do not consider this option in our paper. For the correla-
tion function of each latent process Uq(s), we consider a Matérn correlation
function on a sphere, where the chordal distance is used. For any two lo-
cations on the globe (Li, li), i = 1,2, where Li and li denote latitude and
longitude, respectively, the chordal distance is defined as

ch((L1, l1), (L2, l2))

= 2Rearth

{

sin2
(

L1 −L2

2

)

+ cosL1 cosL2 sin
2

(

l1 − l2
2

)}1/2

.

Here Rearth is the radius of the Earth. Jun, Knutti and Nychka (2008b)
showed that the maximum likelihood estimates of the smoothness parame-
ters for all of the climate models in Table 1 (except for model 4) are close
to 0.5. Therefore, we fix the smoothness parameter values for all the pro-
cesses in U to be 0.5 and this is the same as using an exponential correlation
function for each Uq(s).

3. Model implementation and covariance approximation.

3.1. Model fitting. We adopt a Bayesian approach that specifies prior dis-
tributions on the parameters. Posterior inference for the model parameters
is implemented by model fitting with Gibbs samplers [Gelfand and Smith
(1990)] and Metropolis–Hastings updating [Gelman et al. (2004)]. We set β
to have a p-dimensional multivariate normal distribution prior with large
variances. The prior assignment for the covariance parameters for each Ui

depends upon the specific choice of the correlation functions. In general,
the spatial range parameters are weakly identifiable, and, hence, reasonably
informative priors are needed for satisfactory MCMC behavior. We set prior
distributions for the spatial range parameters relative to the size of their
domains, for instance, by setting the prior means to reflect one’s prior belief
about the practical spatial range of the data. For the LMC setting with
a constant A, we may assign truncated normal priors with positive value
support or inverse gamma priors with infinite variances for the diagonal en-
tries, and normal priors for other entries. For the spatially varying LMC
setting, the priors for the coefficients ηij are normal distributions with large
variances.

Given n locations in the set S = {s1, . . . , sn}, the realization of the re-
sponse vector at these locations can be collectively denoted as Y= (Y(s1)

T ,
. . . ,Y(sn)

T )T , and the corresponding matrix of covariates is X= (X(s1), . . . ,
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X(sn))
T . The data likelihood can be obtained easily from the fact that

Y∼MVN(Xβ,Σw+ In⊗Σε), where Σw is given by (2). Generically denot-
ing the set of all model parameters by Ω, the MCMC method is used to draw
samples of the model parameters from the posterior: p(Ω|Y)∝ P (Ω)P (Y|Ω).
Assuming the prior distribution of β is MVN(µβ,Σβ), the posterior sam-
ples of β are updated from its full conditional MVN(µβ|·,Σβ|·), whereΣβ|· =

[Σ−1
β +X

T (Σw+In⊗Σε)
−1

X]−1, and µβ|· =Σβ|·X
T (Σw+In⊗Σε)

−1
Y. All

the remaining parameters have to be updated using Metropolis–Hastings
steps.

Spatial interpolation in the multivariate case allows one to better esti-
mate one variable at an unobserved location by borrowing information from
co-located variables. It is also called “cokriging” in geostatistics. The multi-
variate spatial regression model provides a natural way to do cokriging. For
example, under the Bayesian inference framework, the predictive distribu-
tion for Y(s0) = [Yi(s0)]i=1:p at a new location s0 is a Gaussian distribution
with

E[Y(s0)|Ω,Y] =X
T (s0)β +h(s0)(Σw + In ⊗Σε)

−1(Y−Xβ)

and

Cov[Y(s0)|Ω,Y] = Γw(s0, s0) +Σε −h(s0)(Σw + In ⊗Σε)
−1

h
T (s0),

where h(s0) = [Γw(s0, si)]i=1:n is the R × nR cross-covariance matrix be-
tween w(s0) and {w(si), i= 1, . . . , n}.

The computationally demanding part in the model fitting is to calculate
the quadratic form of the inverse of the nR × nR matrix Σw + In ⊗Σε,
whose computational complexity is of the order O((nR)3). This computa-
tional issue is often referred to as “the big n problem.” In our climate model
application, we have 1,656 locations for each of the five climate models,
that is, n = 1,656 and R = 5. Although the inversion of the matrix can be
facilitated by the Cholesky decomposition and linear solvers, computation
remains expensive when nR is big, especially for the spatially varying LMC
models which involve a relatively large number of parameters and hence re-
quire multiple likelihood evaluations at each MCMC iteration. We introduce
covariance approximation below as a way to gain computational speedup for
the implementation of the LMC models.

3.2. Predictive process approximation. In this subsection we review the
multivariate predictive process approach by Banerjee et al. (2008) and point
out its drawbacks to motivate our new covariance approximation method.
The predictive process models consider a fixed set of “knots” S∗ = {s∗1, . . . ,
s
∗
m} that are chosen from the study region. The Gaussian process w(s) in
model (1) yields an mR random vector w

∗ = [w(s∗i )]
m
i=1 over S∗. The Best
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Linear Unbiased Predictor (BLUP) of w(s) at any fixed site s based on w
∗

is given by w̃(s) = E{w(s)|w∗}. Being a conditional expectation, it imme-
diately follows that w̃(s) is an optimal predictor of w(s) in the sense that it
minimizes the mean squared prediction error E{‖w(s) − f(w∗)‖2} over all
square-integrable (vector-valued) functions f(w∗) for Gaussian processes,
and over all linear functions without the Gaussian assumption. Banerjee
et al. (2008) refer to w̃(s) as the predictive process derived from the parent
process w(s).

Since the parent process w(s) is an R-dimensional zero-mean multivariate
Gaussian process with the cross-covariance function Γw(s, s

′) = Cov(w(s),
w(s′)), the multivariate predictive process has a closed-form expression

w̃(s) = Cov(w(s),w∗)Var−1(w∗)w∗ = Cw(s,S
∗;θ)C∗−1

w
(θ)w∗,(3)

where Cw(s,S
∗;θ) = [Γw(s, s

∗
1;θ), . . . ,Γw(s, s

∗
m;θ)] is an R × mR cross-

covariance matrix betweenw(s) and {w(s∗), s∗ ∈ S∗}, and C∗
w(θ) = [Γw(s

∗
i , s

∗
j ;

θ)]mi,j=1 is themR×mR cross-covariance matrix of w∗ = [w(s∗i )]
m
i=1 [see, e.g.,

Banerjee, Carlin and Gelfand (2004)].
The multivariate predictive process w̃(s) is still a zero mean Gaussian pro-

cess, but now with a fixed rank cross-covariance function given by Γw̃(s, s
′) =

Cw(s,S
∗;θ)C∗−1

w
(θ)CT

w
(s′,S∗;θ). Let w̃= [w̃(si)]

n
i=1 be the realization of w̃(s)

at the set S of the observed locations. It follows that w̃ ∼ MVN(0,Σw̃),
where Σw̃ = Cw(S,S

∗;θ)C∗−1
w (θ)CT

w(S,S
∗;θ), and Cw(S,S

∗;θ) is an nR×
mR matrix that can be partitioned as an n×1 block matrix whose ith block
is given by Cw(si,S

∗;θ).
Replacing w(s) in (1) with the fixed rank approximation w̃(s), we obtain

the following multivariate regression model:

Y(s) =X
T (s)β + w̃(s) + ε(s),(4)

which is called the predictive process approximation of model (1). Based on
this approximation, the data likelihood can be obtained using Y∼MVN(Xβ,
Cw(S,S

∗;θ)C∗−1
w

(θ)CT
w
(S,S∗;θ))+In⊗Σε). When the number of knots m is

chosen to be substantially smaller than n, computational gains are achieved
since the likelihood evaluation that initially involves inversion of nR× nR
matrices can be done by inverting much smaller mR×mR matrices.

The multivariate predictive process is an attractive reduced rank approach
to deal with large spatial data sets. It encompasses a very flexible class of
spatial cross-covariance models since any given multivariate spatial Gaussian
process with a valid cross-covariance function would induce a multivariate
predictive process. Since the predictive process is still a valid Gaussian pro-
cess, the inference and prediction schemes for multivariate Gaussian spatial
process models that we described in Section 3.1 can be easily implemented
here.
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However, the predictive process models share one common problem with
many other reduced rank approaches: They generally fail to capture lo-
cal/small scale dependence accurately [Stein (2008); Finley et al. (2009);
Banerjee et al. (2010)] and thus lead to biased parameter estimations and
errors in prediction.

To see the problems with the multivariate spatial process w(s) in (1), we
consider the following decomposition of the parent process:

w(s) = w̃(s) + (w(s)− w̃(s)).(5)

We call w(s)− w̃(s) the residual process. The decomposition in (5) immedi-
ately implies a decomposition of the covariance function of the process w(s):

Γw(s, s
′) = Γw̃(s, s

′) + (Γw(s, s
′)− Γw̃(s, s

′)),(6)

where Γw(s, s
′) − Γw̃(s, s

′) is the cross-covariance function of the residual
process w(s) − w̃(s). Note that for any arbitrary set of n locations S ,
Σw −Σw̃ = [Γw(si, sj)]

n
i,j=1 − [Γw̃(si, sj)]

n
i,j=1 is the conditional variance–

covariance matrix of w given w
∗, and hence a nonnegative definite matrix.

Using the multivariate predictive process to approximate w(s), we discard
the residual process Σw −Σw̃ entirely and thus fail to capture the depen-
dence it carries. This is indeed the fundamental issue that leads to biased
estimation in the model parameters.

To understand and illustrate the issue with the predictive process due
to ignoring the residual process, we consider a univariate stationary Gaus-
sian process and we remark that the multivariate predictive process shares
the same problems. Assume the covariance function of the parent process is
Cw(s, s

′) = σ2ρw(s, s
′), where ρw(s, s

′) is the correlation function and σ2 is
the variance, that is, constant over space. Assume τ2 is the nugget variance.
The variance of the corresponding predictive process at location s is given by
σ2
w̃(s) = σ2ρTw(s,S

∗)ρ−1
w (S∗,S∗)ρw(s,S

∗), where ρw(s,S
∗) is the correlation

vector between w(s) and {w(s∗), s∗ ∈ S∗}, and ρw(S
∗,S∗) is the correla-

tion matrix of the realizations of w(s) at the knots in the set S∗. From the
nonnegative definiteness of the residual covariance function, we obtain the
inequality σ2

w(s)≥ σ2
w̃(s). Equality holds when s belongs to S∗. Therefore,

the predictive process produces a lower spatial variability. Banerjee et al.
(2010) proved that there are systematic upward biases in likelihood-based
estimates of the spatial variance parameter σ2 and the nugget variance τ2

using the predictive process model as compared to the parent model. In-
deed, the simulation results in Finley et al. (2009) and Banerjee et al. (2010)
showed that both σ2 and τ2 are significantly overestimated especially when
the number of knots is small. Our simulation study to be presented in Sec-
tion 4 also shows that predictive processes produce biased estimations of
model parameters in the multivariate spatial case.
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3.3. Full-scale covariance approximation. Motivated by the fact that dis-
carding the residual process ε̃(s) = w(s) − w̃(s) is the main cause of the
problem associated with the multivariate predictive process, we seek to com-
plement the multivariate predictive process by adding a component that
approximates the residual cross-covariance function while still maintaining
computational efficiency. We approximate the residual cross-covariance func-
tion by

Γε̃(s, s
′) = [Γw(s, s

′;θ)− Γw̃(s, s
′;θ)] ◦ K(s, s′),(7)

where ◦ denotes the Schur product (or entrywise product) of matrices, and
the matrix-valued function K(s, s′), referred to as the modulating function,
has the property of being a zero matrix for a large proportion of possible
spatial location pairs (s, s′). The zeroing property of the modulating func-
tion implies that the resulting cross-covariance matrix is sparse and, thus,
sparse matrix algorithms are readily applicable for fast computation. We will
introduce below modulating functions that have zero value when s and s

′

are spatially farther apart. For such choices of the modulating function, the
effect of multiplying a modulating function in (7) is expected to be small,
since the residual process mainly captures the small scale spatial variability.

Combining (6) with (7), we obtain the following approximation of the
cross-covariance function:

Γ†
w
(s, s′) = Γw̃(s, s

′) + Γε̃(s, s
′).(8)

Note that the first part of the cross-covariance approximation, Γw̃, is the
result of the predictive process approximation and should capture well the
large scale spatial dependence, while the second part, Γε̃, should capture
well the small scale spatial dependence. We refer to (8) as the full-scale

approximation (FSA) of the original cross-covariance function.
Using the FSA, the covariance matrix of the data Y from model (1) is

approximated by

ΣY =Σw̃ +Σε̃ + In ⊗Σε,(9)

where Σw̃ = Cw(S,S
∗;θ)C∗−1

w
(θ)CT

w
(S,S∗;θ), and Σε̃ = [Γε̃(si, sj;θ)]

n
i,j=1.

The structure of the covariance matrix (9) allows efficient computation of
the quadratic form of its inverse and its determinant. Using the Sherman–
Woodbury–Morrison formula, we see that the inverse of ΣY can be computed
by

(Σw̃+Σε̃+ In ⊗Σε)
−1 = (Σε̃+ In⊗Σε)

−1− (Σε̃+ In⊗Σε)
−1Cw(S,S

∗)

×{C∗
w+Cw(S,S

∗)T (Σε̃+ In⊗Σε)
−1Cw(S,S

∗)}−1(10)

×Cw(S,S
∗)T (Σε̃+ In⊗Σε)

−1.
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The determinant is computed as

det(Σw̃ +Σε̃ + In ⊗Σε)

= det{C∗
w
+ Cw(S,S

∗)T (Σε̃ + In ⊗Σε)
−1Cw(S,S

∗)}(11)

×{det(C∗
w)}

−1 det(Σε̃ + In ⊗Σε).

Notice that Σε̃+ In⊗Σε is a sparse matrix and C∗
w
+ Cw(S,S

∗)T (Σε̃+ In⊗
Σε)

−1Cw(S,S
∗) is anmR×mRmatrix. By lettingm be much smaller than n

and letting Σε̃ + In ⊗Σε have a big proportion of zero entries, the matrix
inversion and the determinant in (10) and (11) can be efficiently computed.
These computational devices are combined with the techniques described in
subsection 3.1 for Bayesian model inference and spatial prediction.

Now we consider one choice of the modulating function, that is, based
on a local partition of the domain. Let B1, . . . ,BK be K disjoint subregions
which divide the spatial domain D. The modulating function is taken to
be K(s, s′) = 1K×K if s and s

′ belong to the same subregion, and K(s, s′) =
0K×K otherwise. Voronoi tessellation is one option to construct the disjoint
subregions [Green and Sibson (1978)]. This tessellation is defined by a num-
ber of centers c= (c1, . . . ,ck), such that points within Bi are closer to ci than
any other center cj , j 6= i, that is, Bi = {s : ‖s− ci‖ ≤ ‖s− cj‖, j 6= i}. Our
choice of a Voronoi partitioning scheme is made on the ground of tractability
and computational simplicity. We would like to point out that our method-
ology is not restricted to this choice and any appropriate partitioning strat-
egy for the spatial domain could be adopted. Since the modulating function
so specified will generate an approximated covariance matrix with block-
diagonal structure, this version of the FSA method is referred to as the
FSA-Block.

The FSA-Block method provides an exact error correction for the predic-

tive process within each subregion, that is, Γ†
w(s, s′) = Γw(s, s

′) if s and s
′

belong to the same subregion, and Γ†
w(s, s

′) = Γw̃(s, s
′) if s and s

′ belong
to different subregions. Unlike the independent blocks analysis of spatial
Gaussian process models, the FSA can take into account large/global scale
dependence across different subregions due to the inclusion of the predictive
process component. Unlike the predictive process, the FSA can take into
account the small scale dependence due to the inclusion of the residual pro-
cess component. An interesting special case of the FSA-Block is obtained by
taking n disjoint subregions, each of which contains only one observation.
In this case, ε̃(s) is reduced to an independent Gaussian process, that is,
Γε̃(s, s) = Γw(s, s)−Γw̃(s, s), and Γε̃(s, s

′) = 0 for s 6= s
′. In fact, this special

case corresponds to the modified predictive process by Finley et al. (2009),
that is, introduced to correct the bias for the variance of the predictive
process models at each location. Clearly, our FSA-Block is a more general
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approach since it also corrects the bias for the cross-covariance between two
locations that are located in the same subregion.

For the FSA-Block, the computation in (10) and (11) can be further
simplified. Assuming the set of observed locations is grouped by subregions,
that is, S = {SB1 , . . . ,SBK

}, the nR×nR matrix Σε̃ becomes a K×K block
diagonal matrix with the kth diagonal block

Cw(SBk
,SBk

)− Cw(SBk
,S∗)C∗−1

w (θ)CT
w(SBk

,S∗), k = 1, . . . ,K,

and, thus, Σε̃ + In ⊗Σε is a K ×K block diagonal matrix. The inversion
and determinant of this block diagonal matrix can be directly computed
efficiently without resorting to general-purpose sparse matrix algorithms if
the size of each block is not large.

The computational complexity of the FSA-Block depends on the knot in-
tensity and the block size. If we take equal-sized blocks, then the computa-
tional complexity of the log likelihood calculation is of the order O(nm2R3+
nb2R3), where m is the number of knots and b is the block size. This is much
smaller than the original complexity of O(n3R3) without using covariance
approximation. Moreover, the computational complexity of the FSA can be
further reduced using parallel computation by taking advantage of the block
diagonal structure of Σε̃.

An alternative choice of the modulating function in (7) is to use a positive
definite function, that is, identically zero whenever ‖s−s

′‖ ≥ γ. Such a func-
tion is usually called a taper function and γ is called the taper range. The
resulting FSA method is referred to as the FSA-Taper. In the univariate case,
any compactly supported correlation function can serve as a taper function,
including the spherical and a family of Wendland functions [see, e.g., Wend-
land (1995); Wendland (1998); Gneiting (2002)]. Sang and Huang (2010)
studied the FSA-Taper and demonstrated its usage for univariate spatial
processes. For the multivariate processes considered in this paper, the mod-
ulating function K(s, s′) can be chosen as any valid multivariate taper func-
tion. One such choice is the matrix direct sum of univariate taper functions,
that is, K(s, s′) =

⊕R
r=1Kr(s, s

′;γr), where Kr is a valid univariate taper
function with the taper range γr used for the rth spatial variable, and differ-
ent taper ranges can be used for different variables. This cross-independent
taper function will work well with the FSA if the cross dependence between
co-located variables can be mostly characterized by the reduced rank pro-
cess w̃. Using this taper function, the cross-covariance matrix of the resid-
ual process, Σε̃, can be transformed by row and column permutations to
a block-diagonal matrix with R diagonal blocks, whose rth diagonal block
is an n × n sparse matrix with the (i, j)-entry being Cov(ε̃r(si), ε̃r(sj)) =
{Cov(wr(si),wr(sj))−Cov(w̃r(si), w̃r(sj))}Kr(si, sj;γr), where w̃r(s) is the
reduced rank predictive process for the rth spatial variable and ε̃r(s) is
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the residual process for the rth spatial variable. If we take the same taper
range for each spatial variable, the computational complexity of the log like-
lihood calculation is of the order O(nm2R3 +ng2R), where g is the average
number of nonzero entries per row in the n× n residual covariance matrix
[Cov(ε̃r(si), ε̃r(sj))]

n
i,j=1 for the rth spatial variable. This is a substantial

reduction from the original computational complexity of O(n3R3) without
using the covariance approximation.

Use of the FSA involves the selection of knots and the local partitioning
or tapering strategy. Given the number of knots, we follow the suggestions
by Banerjee et al. (2010) to use the centers obtained from the K-means
clustering as the knots [e.g., Kaufman and Rousseeuw (1990)]. A careful
treatment of the choice of knot intensity m and the number of partitions K
or the taper range γ will offer good approximation to the original covariance
function. Apparently, a denser knot intensity and larger block size or larger
taper range will lead to better approximation, at higher computational cost.
In principle, we will have to implement the analysis over different choices
of m and K or γ to weigh the trade-off between inference accuracy and
computational cost. We have used the Euclidean distance and taken m to
be 225, K to be 36, and γ to be 10 for the spherical taper function in our
simulation study, and used the chordal distance and taken m to be 200
and K to be 10 in the real application and have found that such choices
work well. A full discussion of this issue will be undertaken in future work.

4. Simulation results. In this section we report results from a simulation
study to illustrate the performance of the FSA approach and compare it
with the predictive process approach and the independent blocks analysis.
The computer implementation of all the approaches used in this simulation
study and the analysis of multiple climate models in the following section
were written in Matlab and run on a processor with dual 2.8 GHz Xeon
CPUs and 12 GB memory.

In this simulation study we generated n= 2,000 spatial locations at ran-
dom from the square [0,100] × [0,100]. The data generating model is a bi-
variate LMC model with a constant 2× 2 lower triangular transformation
matrix A,

Y(s) =AU(s) + ε(s),(12)

where ε(s)∼MVN(0, τ2I2), and U(s) = [Uq(s)]q=1,2 is a 2× 1 process with
two independent components, each of which is a univariate spatial process
with mean zero, unit variance and exponential correlation function. The
range parameters for U1(s) and U2(s) are φ1 = 10 (i.e., such that the spatial
correlation is about 0.05 at 30 distance units) and φ2 = 20, respectively.
The diagonal elements of A are a11 = 1 and a22 = 0.5, and the nonzero
off-diagonal element of A is a21 = 0.5. We set the nugget variance τ2 = 0.01.
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Table 2

The mean and the standard deviations (in parentheses) of the model parameters for the
full covariance model, the predictive process approximation, the independent blocks

approximation, the FSA-Block and the FSA-Taper

Model φ1 φ2 a11 a12 a22 τ2

True 10 20 1 0.5 0.5 1.00e–2

Full model 10.47 (1.02) 22.07 (4.69) 0.99 (0.05) 0.51 (0.03) 0.52 (0.05) 1.01e–2 (3.90e–4)

Predictive process 13.32 (2.32) 22.71 (7.35) 1.22 (0.08) 0.66 (0.05) 0.49 (0.06) 0.15 (3.46e–3)

m= 225

Independent blocks 4.47 (0.99) 4.94 (1.16) 3.56 (0.39) 1.44 (0.28) 1.96 (0.14) 8.97e–3 (1.18e–3)

k = 36

FSA-Block 11.36 (2.21) 21.17 (5.24) 1.02 (0.09) 0.53 (0.05) 0.49 (0.05) 1.10e–2 (9.00e–4)

m= 225, k = 36

FSA-Taper 14.89 (1.90) 29.92 (7.41) 1.05 (0.07) 0.58 (0.04) 0.50 (0.05) 8.36e–3 (1.07e–3)

m= 225, γ = 10

Given these data, we used the Bayesian MCMC approach to generate
samples from the posterior distributions of the model parameters. We as-
signed Unif(1, dmax/3) priors to the range parameters φ1 and φ2, where dmax

is the maximum distance of all pairs. The diagonal elements of A and τ2

were assumed to have the inverse gamma distribution with the shape param-
eter 2 and the scale parameter 1, IG(2,1), as priors. We assigned a normal
prior with large variance for a21.

We compared the model fitting results from four covariance approxima-
tion methods: the predictive process, the independent blocks approximation,
the FSA-Block and the FSA-Taper. As a benchmark for our comparison, we
also fit the original full covariance model without using a covariance approx-
imation. For the predictive process approximation, we used m= 225 knots.
For the independent blocks approximation, we used K = 36 blocks. For the
FSA-Block, we used m= 225 knots and K = 36 blocks. For the FSA-Taper,
we used m= 225 and a spherical tapering function with taper range γ = 10.
The number of blocks for the FSA-Block and the taper range for the FSA-
Taper are selected such that these two FSA methods lead to comparable
approximations for the small scale residual covariance. For the above meth-
ods, the knots were chosen as the centers from the K-means clustering, and
the blocks were taken as equal-sized squares that form a partition of the
[0,100]× [0,100] region.

Table 2 displays the Bayesian posterior means and the corresponding pos-
terior standard deviations for the model parameters under each approach.
We observe that the diagonal values of A, the range parameter of U1, and
the nugget variance τ2 are all overestimated by the predictive process. We
also notice large biases of the parameter estimates using independent blocks
approximation. The FSA-Block provides the most accurate parameter esti-
mation among all the methods.
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Table 3

DIC scores and MSPEs for the full covariance model, the predictive process
approximation, the independent blocks approximation, the FSA-Block and the FSA-Taper.
MSPE-Random is based on a test data set of 200 locations that are randomly selected

from [0,100]× [0,100]. MSPE-Hole is based on a test data set of size 200 that consists of
160 randomly selected locations from [0,100]× [0,100] and 40 random locations within

two circles: {(x, y);x2 + (y− 90)2 < 30} and {(x, y); (x− 50)2 + (y− 50)2 < 35}

Predictive Independent

process blocks FSA-Block FSA-Taper

Full model m= 225 K = 36 m= 225, K = 36 m= 225, γ = 10

DIC 871 2357 3791 918 1547

MSPE-Random 0.12 0.17 0.14 0.12 0.12

MSPE-Hole 0.16 0.26 0.26 0.18 0.18

To gauge the performance on model fitting for different approaches, we
used the deviance information criterion [DIC, Spiegelhalter et al. (2002)],
which is easily calculated from the posterior samples. From Table 3, we ob-
serve that the benchmark full covariance model has the smallest DIC score,
indicating the best model fitting. The FSA-Block approach gives a slightly
larger DIC score than the full model, while the predictive process and the
independent blocks approximation yield significantly larger DIC scores than
the FSA and the full model. This result shows that the FSA performs much
better than the predictive process and independent blocks approximation in
terms of model fitting.

To compare the methods in terms of prediction performance, we com-
puted the mean square prediction errors (MSPE) based on a simulated test
data set of 200 locations using the previously simulated data set with ob-
servations at 2000 locations as the training set. We experimented with two
different kinds of test sets: one set consists of 200 locations randomly se-
lected from [0,100]× [0,100] and another consists of 160 randomly selected
locations from [0,100]× [0,100] and 40 random locations within two circles:
{(x, y);x2+(y− 90)2 < 30} and {(x, y); (x− 50)2 +(y− 50)2 < 35}. The sec-
ond interpolation scenario is common in practice where missing data often
correspond to sizable gaps/holes.

From Table 2, we see that both the FSA-Block and the FSA-Taper meth-
ods lead to much more accurate predictions than the predictive process and
the independent blocks approximation. In the scenario of predicting for miss-
ing gaps/holes, the advantage of using the FSA approach over the other two
approximation approaches is more significant.

To compare the computation efficiency of the covariance approximations
for larger data sets, we repeated the simulation study when the number
of spatial locations in the training set is increased to 5,000 and the num-
ber of locations in the test set to 1,000. We measured the MSPE and the
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Fig. 1. The MSPE versus time plot for the simulation study in Section 4 under the
predictive process (circle), the FSA-Block (plus) and the FSA-Taper (star).

associated computational time based on the prediction at the 1,000 test
locations. The test set consists of 800 randomly sampled locations from
[0,100] × [0,100] and 200 locations randomly selected within two circles:
{(x, y);x2 + (y − 90)2 < 30} and {(x, y); (x − 50)2 + (y − 50)2 < 35}. The
MSPE for each model was obtained by plugging in the true parameter val-
ues into the BLUP equation. Pairs of the MSPE and the computational
time were obtained by varying the knot intensity for the predictive process
model, block size for the independent blocks approximation, knot intensity
and block size for the FSA-Block approach, and knot intensity and taper
range for the FSA-Taper approach. Figure 1 shows that both the FSA-Taper
and the FSA-Block methods outperform the predictive process in terms
of their computational efficiency for making predictions. The independent
blocks approximation yields much larger MSPE than the other three ap-
proaches given the same computational time and we decided not to include
its results in Figure 1. It is also noticeable that the required computational
time of the FSA-Block approach to obtain the same MSPE is much less than
that of the FSA-Taper approach. For this reason, we used the FSA-Block
approach to analyze the climate errors data in Section 5.

We acknowledge that performance for the approximation approaches may
depend on the characteristics of spatial data, such as sample size, pattern
of sampling locations, spatial smoothness and spatial correlation range. To
investigate the effect of spatial correlation range on the performance of the
FSA approach, we conducted two other experiments: one with small range
parameters φ1 = 5 and φ2 = 10, and the other with large range parameters
φ1 = 30 and φ2 = 60. In the case of small spatial ranges, the independent
blocks approximation performed better than the predictive process, while
the FSA performed similarly to the independent blocks analysis. In the case
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Fig. 2. The first column shows the surface maps of climate model errors. The second
and the third columns show the estimated mean structure of each climate model error and
the associated standard deviations.

of large spatial ranges, the predictive process performed similarly to the
FSA and both methods performed significantly better than the independent
blocks approximation. These two experiments indicate that both the predic-
tive process and the independent blocks approximation have their modes of
successes and failures. Under their failure modes, to achieve accurate model
inference and prediction, one has to use either a significantly large rank
number m for the predictive process or a very small number of blocks K for
the independent blocks approach, therefore, the computational advantages
associated with a small m and a large K would disappear. In contrast, by
the combining of a small m and a large K, the FSA-Block flexibly accom-
modates data sets with either large scale or small scale spatial variations
while still maintaining the computational efficiency.
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5. Application result. To build a joint model that accounts for the cross-
covariance structure of the multiple climate model errors, we fit and com-
pared two versions of the LMC models, corresponding to spatially fixed and
spatially varying transformation matrices, as described in Section 2.2. The
LMC model specification depends on the ordering of the response variables
because of the lower triangular specification of the transformation matrix.
When applying the LMC model to the five climate model errors, we tried
a few orderings of climate models and found that different orderings may
produce different values of parameters but they produced fairly consistent
estimates of variances and cross-correlations. Therefore, we chose to present
the results based on the order given in Table 1.

We applied the FSA-Block approach to facilitate the computation. We
used 225 knots selected by the K-means clustering algorithm and divided
the study region into 10 regions for subsequent analysis. We assumed the
exponential spatial correlation function for each Uq(s), and assigned a uni-
form prior U(50,4,500) for each of the spatial range parameters given that
the maximum chordal distance between any two locations is 12,757 km. For
each of the coefficients β in the regression in model (1), we assumed inde-
pendent normal priors with mean 0 and variance 1,000. For the LMC model
with a constant A, we assumed the diagonal entries to have truncated nor-
mal distributions ranging from 0 to ∞ and diagonal entries to have normal
distributions, with their means being the empirical estimates of A and vari-
ances 1,000. For the spatially varying LMC model with A(s), we assumed
that the intercepts of the coefficients ηij in the regression model for A(s)
have normal distributions, with their means being the empirical estimates
of A and variances being 1,000. We set normal priors with mean 0 and
variance 1,000 to the other coefficients of ηij . For each model, we ran 3,000
iterations of MCMC to collect posterior samples after a burn-in period of
1,000 iterations, thinning every third iteration.

The DIC scores of two specifications for A were compared, one with a con-
stant A and the other with spatially varying A depending on polynomials
of latitude, land/ocean effect and altitude, as detailed in Section 2.2. The
DIC score for the model with a spatially varying A(s) is 9,901, which is
much smaller than the score of 11,975 for the model with a constant A.
This suggests that the spatially varying LMC model performs significantly
better than the model with a constant A, as we expected. From now on, we
present results based solely on the spatially varying LMC model.

Figure 2 shows the estimated mean structure and its standard deviations
obtained from the posterior samples. It is interesting to note a clear distinc-
tion between model 5 and the rest of the models; for model 5, the estimated
means are negative with large magnitudes over high altitude areas, whereas
the rest gives large positive values for the estimated mean structure over high
latitude areas. This finding is consistent with the result in Jun, Knutti and
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Nychka (2008b) [note that the model numbers in this paper and the model
numbers in Jun, Knutti and Nychka (2008b) are different, although all the
models used in this paper are also used in Jun, Knutti and Nychka (2008b)].
Recall that the model error is calculated by subtracting the model output
from the observation. The above result suggests that models 1–4 may under-
estimate the mean state of the surface temperature over the high-altitude
and high-latitude regions, and model 5 may overestimate the mean state
over the high-altitude area. The estimated mean structure and its associ-
ated standard deviations are quite similar for the models developed by the
same groups—models 1 and 2 from the GFDL group of NOAA, and mod-
els 3 and 4 from the Hadley Centre in the UK. The spatial patterns of the
associated standard deviations for those pairs are also quite similar. For all
the models, altitude is responsible for the dominant effects in the fixed part
of the process and we also see some effects of latitude, although longitude
does not seem to be significant in the mean structure. Models 3–5 seem to
have large errors in the high-latitude and sea-ice area. The indicator for the
land and the ocean is not significant for the mean structure. This may be
due to the fact that we already include altitude as a covariate (altitude is
positive over the land and zero over the ocean).

Given the posterior samples of the model parameters, we draw sam-
ples of the cross-covariance matrix at each location s based on Γw(s, s) =
A(s)AT (s). The diagonals of Γw(s, s) are the variances of the climate model
errors at location s. Figure 3 shows the maps of standard deviations for each
model error and the standard deviations of the standard deviations obtained
from the posterior samples. The patterns throughout all 5 models are quite
consistent; high standard deviations at high altitudes, and standard devi-
ations are higher over the land than over the ocean. For models 1 and 3,
latitude seems to be a significant factor. For all the models, given the values
of the posterior sample standard deviations of the standard deviations, the
spatial patterns that we observe (such as high variances over high altitude
or high latitude area) are statistically significant and are not due to random
variations in the data. The sea-ice region is one of the places that models in
general have trouble. Although we do not have a factor for sea-ice region in
the model, we see high standard deviations around sea-ice area. This may
be due to the interaction between latitude and the indicator for the land
and the ocean. As we expected, model 5 has significantly larger values of
standard deviations, especially in high-altitude areas, compared to the rest
of the models. The standard deviations of the error of model 5 over the Hi-
malayan area are more than 10. Their associated posterior sample standard
deviations are also quite large. Overall, we observe that standard deviations
of model errors are slightly higher over the land than over the ocean.

Now we discuss the estimates of cross-correlations of different climate
model errors. Figure 4 gives the spatial maps of cross-correlations between
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Fig. 3. Surface maps of the estimated standard deviations of each climate model (left
column) and the associated standard deviations (right column).

each pair of climate model errors, obtained from the posterior samples. The
corresponding standard deviation of the estimated cross-correlations using
the posterior samples are given in Figure 5. In both figures, we use the same
color scale across pairs of models to make the comparison easier. First,
notice that overall the correlation between models 1 and 2, two models
developed by the GFDL group of NOAA, is the highest. For models 1 and 2,
overall the correlation values are strikingly high and the associated standard
deviation values are close to zero. The maximum correlation value over the
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Fig. 4. Surface maps of the estimated cross-correlation for each pair of climate model
errors.

entire domain is 0.769, the average of correlations over the ocean is 0.732
with the standard deviation 0.017, and the average over the land is 0.639
with the standard deviation 0.021. Jun, Knutti and Nychka (2008b) also
report the highest level of cross-correlation for this pair of models. The
cross-correlations between models 3 and 4 (two models developed by the
Hadley Centre in the UK) are not as high as those between models 1 and 2
and they are comparable to the cross-correlations between any one of the
models 1 and 2 and any one of the models 3 and 4. In addition, the cross-
correlation structure between models 1 and 2 shows different spatial patterns
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Fig. 5. Standard deviation of the estimated cross-correlation for each pair of climate
model errors in Figure 4.

compared with that between models 3 and 4. Models 1 and 2 have quite small
correlation over high-altitude area, meaning that the two models disagree
over high-altitude areas, whereas models 3 and 4 have consistently large
correlations over the entire domain. For models 3 and 4, the average of
correlations over the land and the ocean are both slightly larger than 0.4.
Cross-correlations between model 5 and the rest of the models are quite small
in magnitude and the patterns are consistent for all the 4 pairs. Correlations
between model 5 and the rest of the models are quite small over the land,
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over high latitudes in the Northern Hemisphere and over low latitude area
in the Southern Hemisphere. From these maps, it is clear that model 5 is
significantly different from the rest of the models and this agrees with the
result in Jun, Knutti and Nychka (2008b). In many pairs of models, we see
clear effects of the indicator for the land and the ocean, and the latitude.

In addition to the cross-correlations at the same location, our method
allows us to examine both marginal and cross-covariances/correlations be-
tween two different locations, based on the posterior samples. Given that the
cross-correlations at the same location are quite different over the land and
the ocean, we examined the spatial correlations against spatial distance over
the land and the ocean separately. Figure 6 gives both marginal and cross-
correlations against chordal distance (unit: km) for pairs of models based
on the 1,656 observational grid points. Since we adopted exponential spa-
tial correlation functions for the latent spatial processes Uq(s)’s in the LMC
model with the lower triangular structure for A(s), the fitted correlation
function for model 1 is isotropic. We also note that marginally the model
errors 2, 3 and 4 give similar spatial correlation structures over the land and
the ocean, while model 5 shows mild discrepancy between the correlations
over the land and the ocean. Moreover, the spatial correlation structure of
model 5 exhibits a slower spatial decay compared with the rest of the climate
model errors. Models developed by the same group (i.e., pairs 1 and 2, and 3
and 4) give similar spatial cross-correlation structure for both over the land
and over the ocean. The cross-correlations between model 5 and the rest of
the models are close to zero over the land, while those over the ocean are
significantly different from zero.

As in Jun, Knutti and Nychka (2008b) and Sain, Furrer and Cressie
(2011), we can perform the analysis for the summer season average of North-
ern Hemisphere (JJA, June–July–August average) in the same way that we
did for the DJF averages. We do not include those results for brevity of the
paper.

We have also implemented the spatially varying LMC using the predictive
process with the same knots as the FSA (m= 200) for comparison purposes.
The DIC score of the predictive process model is 35,526, which is much larger
than the DIC score of 9,901 of the FSA model, indicating that the FSA
model has a better model fitting for the data. We did not observe significant
difference in the estimations for the spatial range parameters. We present
in Figure 7 the correlation maps between models 1 and 3 to illustrate the
difference between the results of the two approaches. Although, for this real
data analysis, the true correlations between models 1 and 3 are unknown, the
results obtained from the FSA approach seem to be more reasonable than
those from the predictive process. For instance, the map using the FSA
approach clearly shows that the correlations over the ocean are in general
higher than the correlations over the land, as expected based on previous
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Fig. 6. Spatial correlations for pairs of model errors against chordal distance (unit: km).
Due to the nonstationarity of the correlation structure, we display the correlation in the
following way. For each pair of model errors, we first obtain a 1,656 × 1,656 cross (or
marginal)-correlation matrix given from the posterior mean of the correlations. Then we
calculate the averages, the 10th and the 90th percentiles of the correlations within each bin,
with 30 equally spaced bins from distance 0 to 5,000 km, separately over the land and the
ocean. Solid lines connect the binned averages and dashed lines connect the 10th and the
90th percentiles.
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Fig. 7. Correlation maps and the associated standard deviation maps between models 1
and 3. The upper panel shows the maps using the FSA-Block approach and the bottom
panel shows the maps using the predictive process.

studies. The map using the predictive process fails to show this pattern. The
poor performance of the predictive process in this example might be due to
the inadequate number of knots and hence can be remedied by increasing
the knots intensity. However, increasing the number of knots will greatly
increase the computational time of the predictive process.

6. Discussion. We built a joint spatial model for multivariate climate
model errors accounting for their cross-covariances through a spatially vary-
ing LMC model. To facilitate Bayesian computation for large spatial data
sets, we developed a covariance approximation method for multivariate spa-
tial processes. This full-scale approximation can capture both the large scale
and small scale spatial dependence and correct the bias problem of the pre-
dictive process.

Our empirical results confirmed that pairs of climate models developed
by the same group have high correlations and climate models in general
have correlated errors. We also showed that some climate models are very
different from other climate models and, thus, the cross-correlations between
them are quite small.

In principle, we could combine multiple climate model outputs as a weigh-
ted linear combination, along the same lines as Sain and Furrer (2010), based
on our modeling approach rather than the Bayesian Gaussian MRF model
described in Section 4 of Sain and Furrer (2010). However, recently there
have been several papers that raise concerns about the practice of com-
bining multiple climate model outputs through model weighting or ranking
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[see, e.g., Knutti et al. (2010b); Knutti (2010); Weigel et al. (2010)]. The
main concern is the difficulty of interpreting the weighted average of climate
models physically. Knutti et al. (2010a) suggest that if model ranking or
weighting is applied, both the quality metric and the statistical framework
used to construct the ranking or weighting should be recognized. To deter-
mine what is the best quality metric in weighting or ranking the climate
models is a challenging problem.

We focus on the climate model errors in this paper. It would be interesting
to build more elaborate joint models of multiple climate model outputs
as well as observations at their original spatial grid resolutions. To follow
this path, we need to have a statistical representation of the true climate,
which is very challenging. One possibility is to model the observation as the
truth, with measurement errors assumed with a simple covariance structure.
However, this assumption might not be realistic considering the relatively
complex nature of biases and errors in the climate observations.

In this paper we addressed only the spatial aspect of the problem and we
applied our methodology to the mean state of the climate variable. It would
be interesting to extend our approach to spatio-temporal problems and, in
particular, to consider the climate model outputs in their original time scale
of monthly averages or annual averages for studying the trend of the climate
model errors.
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