71 research outputs found

    Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.</p> <p>Methods</p> <p>The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).</p> <p>Results</p> <p>Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.</p> <p>Conclusions</p> <p>Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.</p

    Association of a Deletion of GSTT2B with an Altered Risk of Oesophageal Squamous Cell Carcinoma in a South African Population: A Case-Control Study

    Get PDF
    Polymorphisms in the Glutathione S-transferase genes are associated with altered risks in many cancers, but their role in oesophageal cancer is unclear. Recently a 37-kb deletion polymorphism of GSTT2B that reduces expression of GSTT2 has been described. We evaluated the influence of the GSTT1 and GSTT2B deletion polymorphisms, and the GSTP1 Ile105Val polymorphism (rs1695) on susceptibility to oesophageal squamous cell carcinoma (OSCC) in the Black and Mixed Ancestry populations of South Africa.The GSTT1, GSTT2B and GSTP1 variants were genotyped in 562 OSCC cases and 907 controls, and tested for association with OSCC and for interaction with smoking and alcohol consumption. Linkage disequilibrium (LD) between the deletions at GSTT1 and GSTT2B was determined, and the haplotypes tested for association with OSCC. Neither the GSTT1 deletion nor the GSTP1 Ile105Val polymorphism was associated with OSCC risk in the Black or Mixed Ancestry populations. The GSTT2B deletion was not associated with OSCC risk in the Black population, but was associated with reduced risk of OSCC in the Mixed Ancestry population (OR=0.71; 95% CI 0.57-0.90, p=0.004). Case-only analysis showed no interaction between the GST polymorphisms and smoking or alcohol consumption. LD between the neighboring GSTT1 and GSTT2B deletions was low in both populations (r(2)(Black)=0.04; r(2)(MxA)=0.07), thus these deletions should be assessed independently for effects on disease risk.Although there was no association between the GSTT1 deletion polymorphism or the GSTP1 Ile105Val polymorphism with OSCC, our results suggest that the presence of the recently described GSTT2B deletion may have a protective effect on the risk of OSCC in the Mixed Ancestry South African population. This is the first report of the contribution of the GSTT2B deletion to cancer risk

    The Orphan Gene ybjN Conveys Pleiotropic Effects on Multicellular Behavior and Survival of Escherichia coli

    Get PDF
    YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant

    Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads

    Get PDF
    Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species
    • …
    corecore