44 research outputs found

    Multiwavelength monitoring and reverberation mapping of a changing look event in the Seyfert galaxy NGC 3516

    Get PDF
    We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC 3516 carried out in 2018 to 2020 covering the wavelength range from the X-ray to the optical. The facilities included the telescopes of the CMO SAI MSU, the 2.3-m WIRO telescope, and the XRT and UVOT of Swift. We found that NGC 3516 brightened to a high state and could be classified as Sy1.5 during the late spring of 2020. We have measured time delays in the responses of the Balmer and He ii λ4686 lines to continuum variations. In the case of the best-characterized broad H β line, the delay to continuum variability is about 17 d in the blue wing and is clearly shorter, 9 d, in the red, which is suggestive of inflow. As the broad lines strengthened, the blue side came to dominate the Balmer lines, resulting in very asymmetric profiles with blueshifted peaks during this high state. During the outburst the X-ray flux reached its maximum on 2020 April 1 and it was the highest value ever observed for NGC 3516 by the Swift observatory. The X-ray hard photon index became softer, ∼1.8 in the maximum on 2020 April 21 compared to the mean ∼0.7 during earlier epochs before 2020. We have found that the UV and optical variations correlated well (with a small time delay of 1–2 d) with the X-ray until the beginning of 2020 April, but later, until the end of 2020 June, these variations were not correlated. We suggest that this fact may be a consequence of partial obscuration by Compton-thick clouds crossing the line of sight.</p

    Ammoniated electron as a solvent stabilized multimer radical anion

    Full text link
    The excess electron in liquid ammonia ("ammoniated electron") is commonly viewed as a cavity electron in which the s-type wave function fills the interstitial void between 6-9 ammonia molecules. Here we examine an alternative model in which the ammoniated electron is regarded as a solvent stabilized multimer radical anion, as was originally suggested by Symons [Chem. Soc. Rev. 1976, 5, 337]. In this model, most of the excess electron density resides in the frontier orbitals of N atoms in the ammonia molecules forming the solvation cavity; a fraction of this spin density is transferred to the molecules in the second solvation shell. The cavity is formed due to the repulsion between negatively charged solvent molecules. Using density functional theory calculations for small ammonia cluster anions in the gas phase, it is demonstrated that such core anions would semi-quantitatively account for the observed pattern of Knight shifts for 1-H and 14-N nuclei observed by NMR spectroscopy and the downshifted stretching and bending modes observed by infrared spectroscopy. It is speculated that the excess electrons in other aprotic solvents (but not in water and alcohols) might be, in this respect, analogous to the ammoniated electron, with substantial transfer of the spin density into the frontier N and C orbitals of methyl, amino, and amide groups forming the solvation cavity.Comment: 34 pages, 12 figures; to be submitted to J Phys Chem

    Hierarchical structure of cascade of primary and secondary periodicities in Fourier power spectrum of alphoid higher order repeats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of approximate tandem repeats is an important task of broad significance and still remains a challenging problem of computational genomics. Often there is no single best approach to periodicity detection and a combination of different methods may improve the prediction accuracy. Discrete Fourier transform (DFT) has been extensively used to study primary periodicities in DNA sequences. Here we investigate the application of DFT method to identify and study alphoid higher order repeats.</p> <p>Results</p> <p>We used method based on DFT with mapping of symbolic into numerical sequence to identify and study alphoid higher order repeats (HOR). For HORs the power spectrum shows equidistant frequency pattern, with characteristic two-level hierarchical organization as signature of HOR. Our case study was the 16 mer HOR tandem in AC017075.8 from human chromosome 7. Very long array of equidistant peaks at multiple frequencies (more than a thousand higher harmonics) is based on fundamental frequency of 16 mer HOR. Pronounced subset of equidistant peaks is based on multiples of the fundamental HOR frequency (multiplication factor <it>n </it>for <it>n</it>mer) and higher harmonics. In general, <it>n</it>mer HOR-pattern contains equidistant secondary periodicity peaks, having a pronounced subset of equidistant primary periodicity peaks. This hierarchical pattern as signature for HOR detection is robust with respect to monomer insertions and deletions, random sequence insertions etc. For a monomeric alphoid sequence only primary periodicity peaks are present. The 1/<it>f</it><sup><it>β </it></sup>– noise and periodicity three pattern are missing from power spectra in alphoid regions, in accordance with expectations.</p> <p>Conclusion</p> <p>DFT provides a robust detection method for higher order periodicity. Easily recognizable HOR power spectrum is characterized by hierarchical two-level equidistant pattern: higher harmonics of the fundamental HOR-frequency (secondary periodicity) and a subset of pronounced peaks corresponding to constituent monomers (primary periodicity). The number of lower frequency peaks (secondary periodicity) below the frequency of the first primary periodicity peak reveals the size of <it>n</it>mer HOR, i.e., the number <it>n </it>of monomers contained in consensus HOR.</p

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    The fluence and distance distributions of fast radio bursts

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved. Fast radio bursts (FRB) are millisecond-duration radio pulses with apparent extragalactic origins. All but two of the FRBs have been discovered using the Parkes dish, which employs multiple beams formed by an array of feed horns on its focal plane. In this paper, we show that (i) the preponderance of multiple-beam detections and (ii) the detection rates for varying dish diameters can be used to infer the index α of the cumulative fluence distribution function (the logN–logF function: α = 1.5 for a non-evolving population in a Euclidean universe). If all detected FRBs arise from a single progenitor population, multiple-beam FRB detection rates from the Parkes telescope yield the constraint 0.52 < α < 1.0 with 90% confidence. Searches at other facilities with different dish sizes refine the constraint to 0.5 < α < 0.9. Our results favor FRB searches with smaller dishes, because for α < 1 the gain in field of view for a smaller dish is more important than the reduction in sensitivity. Further, our results suggest that (i) FRBs are not standard candles, and (ii) the distribution of distances to the detected FRBs is weighted toward larger distances. If FRBs are extragalactic, these results are consistent with a cosmological population, which would make FRBs excellent probes of the baryonic content and geometry of the universe
    corecore