333 research outputs found

    Study of Small-Scale Anisotropy of Ultrahigh Energy Cosmic Rays Observed in Stereo by HiRes

    Full text link
    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes is thus an excellent instrument for the study of the arrival directions of ultrahigh energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5 degrees) and at the highest energies (>10^19 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 10^19 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.Comment: 4 pages, 3 figures. Matches accepted ApJL versio

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Evolution of the number of accreting white dwarfs with shell nuclear burning and of occurrence rate of SN Ia

    Full text link
    We analyze temporal evolution of the number of accreting white dwarfs with shell hydrogen burning in semidetached and detached binaries. We consider a stellar system in which star formation lasts for 10 Gyr with a constant rate, as well as a system in which the same amount of stars is formed in a single burst lasting for 1 Gyr. Evolution of the number of white dwarfs is confronted to the evolution of occurrence rate of events that usually are identified with SN Ia or accretion-induced collapses, i.e. with accumulation of Chandrasekhar mass by a white dwarf or a merger of a pair of CO white dwarfs with total mass not lower than the Chandrasekhar one. In the systems with a burst of star formation, at t=t=10 Gyr observed supersoft X-ray sources, most probably, are not precursors of SN Ia. The same is true for an overwhelming majority of the sources in the systems with constant star formation rate. In the systems of both kinds mergers of white dwarfs is the dominant SN Ia scenario. In symbiotic binaries, accreting CO-dwarfs do not accumulate enough mass for SN Ia explosion, while ONeMg-dwarfs finish their evolution by an accretion-induced collapse with formation of a neutron star.Comment: 11 pages, 2 figures, accepted by Astronomy Letter

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    An upper limit on the electron-neutrino flux from the HiRes detector

    Full text link
    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa

    A Search for Arrival Direction Clustering in the HiRes-I Monocular Data above 10^(19.5) eV

    Full text link
    In the past few years, small scale anisotropy has become a primary focus in the search for source of Ultra-High Energy Cosmic Rays (UHECRs). The Akeno Giant Air Shower Array (AGASA) has reported the presence of clusters of event arrival directions in their highest energy data set. The High Resolution Fly's Eye (HiRes) has accumulated an exposure in one of its monocular eyes at energies above 10^(19.5) eV comparable to that of AGASA. However, monocular events observed with an air fluorescence detector are characterized by highly asymmetric angular resolution. A method is developed for measuring autocorrelation with asymmetric angular resolution. It is concluded that HiRes-I observations are consistent with no autocorrelation and that the sensitivity to clustering of the HiRes-I detector is comparable to that of the reported AGASA data set. Furthermore, we state with a 90% confidence level that no more than 13% of the observed HiRes-I events above 10^(19.5) eV could be sharing common arrival directions. However, because a measure of autocorrelation makes no assumption of the underlying astrophysical mechanism that results in clustering phenomena, we cannot claim that the HiRes monocular analysis and the AGASA analysis are inconsistent beyond a specified confidence level.Comment: 16 pages, 23 figure

    Search for Point Sources of Ultra-High Energy Cosmic Rays Above 40 EeV Using a Maximum Likelihood Ratio Test

    Full text link
    We present the results of a search for cosmic ray point sources at energies above 40 EeV in the combined data sets recorded by the AGASA and HiRes stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.Comment: 7 pages, 7 figures. Accepted for publication in The Astrophysical Journa

    Search for Correlations between HiRes Stereo Events and Active Galactic Nuclei

    Full text link
    We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and Active Galactic Nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.Comment: 13 pages, 1 table, 5 figure
    • 

    corecore