27,367 research outputs found

    A two component jet model for the X-ray afterglow flat segment in short GRB 051221A

    Full text link
    In the double neutron star merger or neutron star-black hole merger model for short GRBs, the outflow launched might be mildly magnetized and neutron rich. The magnetized neutron-rich outflow will be accelerated by the magnetic and thermal pressure and may form a two component jet finally, as suggested by Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two component jet model could well reproduce the multi-wavelength afterglow lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In this model, the central engine need not to be active much longer than the prompt γ−\gamma-ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ

    Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs

    Full text link
    For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high energy photons are absorbed by the MeV photon flow and generate relativistic e^\pm pairs. These pairs re-scatter the soft X-ray photons from the forward shock as well as the prompt \gamma-ray photons and power detectable high energy emission, significant part of which is in the sub-GeV energy range. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent on whether the GRB ejecta are magnetized (in which case the reverse shock IC and synchrotron self-Compton emission is suppressed). As a result, a sub-GeV flash is a generic signature for the GRB wind model, and it should be typically detectable by the future {\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission powered by the interaction of the shock accelerated protons with the synchrotron photons in both the forward and reverse shock regions, there comes another 101410^{14}eV neutrino emission component powered by protons interacting with the MeV photon flow. This last component has a similar spectrum to the one generated in the internal shock phase, but the typical energy is slightly lower.Comment: 7 pages, accepted for publication in Ap

    A super-ductile alloy for the die-casting of aluminium automotive body structural components

    Get PDF
    Super-ductile die-cast aluminium alloys are critical to future light-weighting of automotive body structures. This paper introduces a die-cast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a die-cast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation. © (2014) Trans Tech Publications, Switzerland.The EPSRC and JLR U

    Strong GeV Emission Accompanying TeV Blazar H1426+428

    Full text link
    For High frequency BL Lac objects (HBLs) like H1426+428, a significant fraction of their TeV gamma-rays emitted are likely to be absorbed in interactions with the diffuse IR background, yielding e±e^\pm pairs. The resulting e±e^\pm pairs generate one hitherto undiscovered GeV emission by inverse Compton scattering with the cosmic microwave background photons (CMBPs). We study such emission by taking the 1998-2000 CAT data, the reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra proposed by Aharonian et al. (2003a). We numerically calculate the scattered photon spectra for different intergalactic magnetic field (IGMF) strengths. If the IGMF is about 10−18G10^{-18}{\rm G} or weaker, there comes very strong GeV emission, whose flux is far above the detection sensitivity of the upcoming satellite GLAST! Considered its relatively high redshift (z=0.129z=0.129), the detected GeV emission in turn provides us a valuable chance to calibrate the poor known spectral energy distribution of the intergalactic infrared background, or provides us some reliable constraints on the poorly known IGMF strength.Comment: 5 pages, 1 figure. A&A in Pres

    Spectrum scanning and reserve channel methods for link maintenance in cognitive radio systems

    Get PDF
    • …
    corecore